TIN

Annual Survey Covering the Year 1974

P. G. Harrison

Department of Chemistry, University of Nottingham University Park, Nottingham NG7 2RD, England

Co	onten	ts:

1.	Review Articles.	242
2.	Compounds with Four Tin-carbon Bonds.	242
3.	Hydrides.	267
4.	Halides.	271
5.	Pseudohalides.	280
6.	Oxides, Alkoxides, and Related Compounds.	283
7.	Carboxylates and Oxyacid Derivatives.	302
8.	Sulphur Derivatives.	309
9.	Nitrogen and Phosphorus Derivatives.	316
10.	Tin-Main Group Metal Bonded Derivatives.	322
11.	Tin-Transition Metal Bonded Derivatives.	331
12.	Divalent Organotin Derivatives.	338
13.	Physical and Spectroscopic Data.	342
	(i) Vibrational Spectra.	342
	(ii) Nmr Data.	342
	(iii) Mass Spectra.	343
	(iv) Mössbauer Spectra.	343
	(v) Miscellaneous Data.	344
14.	Applications.	345

~ . ~

⁺Tin, Annual Survey covering the year 1973 see J. Organometal. Chem., 79(1974)17-174.

During 1974 a new international series of symposia was instituted to discuss advances in the organic chemistry of germanium, tin and lead. The emphasis of the first symposium clearly lay towards tin: all seven of the plenary lectures and thirty four of the forty short communications delivered being wholly or in part concerned with diverse aspects of the chemistry of this metal.¹ The second symposium is scheduled to be held in Utrecht in 1976.

1. REVIEW ARTICLES.

242

Several reviews have appeared which contain sections devoted to aspects of organotin chemistry. Perhaps the most interesting is that by Thayer² which deals with the interaction of organometallic compounds with living organisms. Other subjects which have been reviewed are stannaboroxanes³, fluxional organotin compounds⁴, organotin peroxy compounds⁵, <u>0</u>-organotin hydroxylamine and oxime derivatives⁶, cycloalkanes containing heterocyclic tin⁷, the preparation and chemistry of tin free-radicals⁸, the ligand characteristics of the Me₃SnCH₂- group⁹, the chemistry of coordinated organotinsubstituted phosphines¹⁰, and the production and use of organotin compounds¹¹. The use of organotin compounds as stabilisers for FVC has also been reviewed¹². Mössbauer data for monoorganotin derivatives has been collected together and evaluated²⁸⁷.

2. COMPOUNDS WITH FOUR TIN-CARBON BONDS.

Crystals of tetrakis(pentafluorophenyl)tin. $(C_6F_5)_4$ Sn, consists of discrete molecules with exact $\overline{4}$ crystallographic symmetry (Fig. 1). The Sn-C bond distance and CSnC bond angle are 2.126(8)Å and 105.5(4)^o, respectively

Fig. 1. View of $(C_{6}F_{5})_{4}$ Sn along the molecular $\overline{4}$ axis. (Reproduced by permission of the American Chemical Society).

243

Transfer of methyl groups from trimethylgallium to tin films forming tetramethyltin has been observed at 190° ¹⁴. CD₃ and CF₃ radicals abstract hydrogen atoms from tetramethyltin:

$$CX_{3}$$
 + $Me_{4}Sn \longrightarrow CHX_{3}$ + $CH_{2}SnMe_{3}$
X = D, F

Not unexpectedly, H atom abstraction is more efficient with CF_3 radicals, the reactivity ratio ${}^{R}CF_3/R_{CD_3}$ being <u>ca</u>. 58 at 373K¹⁵. The reaction of Me_3SnCF_3 with $CF_3HgO_2CCF_3$ proceeds with Sn-Me bond cleavage giving $Me_2Sn(CF_3)O_2CCF_3$ and CF_3HgMe :

$$Me_{3}SnCF_{3} + CF_{3}HgO_{2}CCF_{3} \longrightarrow Me_{2}Sn(CF_{3})O_{2}CCF_{3} + CF_{3}HgMe$$

In contrast, $M_{\Theta_3}SnCF_3$ and CF_3HgCl hardly react, whilst the reaction between tetramethyltin and $CF_3HgO_2CCF_3$ is very slow¹⁶. No reaction occurred when

 Me_3SnCF_3 and pentafluorobenzoyl fluoride were heated at either 140° or 200°, but insertion of of difluorocarbene into the terminal C-F bond took place on heating Me_3SnCF_3 with <u>n</u>-C₃F₇OCF(CF₃)CF₂OCF(CF₃)C(0)F at 140° ¹⁷:

83%

Both Seyferth¹⁸ and Bulten¹⁹ have published routes to small-ring stannacycloalkanes. Seyferth has synthesised the first distannacyclobutane, I, via the lithium reagent (Me₃Si)₂CBrLi according to the scheme:

Other tin-containing products present in trace quantities were tentatively identified as $Me_2Sn[CBr(SiMe_3)_2]_2$ and $(Me_3Si)_2C(SnClMe_2)_2$. In addition to spectroscopic data, I was also characterised chemically by its reaction with an equimolecular amount of methyllithium at room temperature followed by hydrolysis with aqueous NH_4Cl . This procedure yields $(Me_3Si)_2(Me_3Sn)CH$ and $Me_3SnC(SiMe_3)_2SnMe_2C(SiMe_3)_2H$, which are the products expected to arise

244

from hydrolysis of II and III, the expected cleavage products from the reaction of methyllithium with I:

$$I \xrightarrow{MeLi} (Me_{3}Si)_{2}(Me_{3}Sn)CLi + Me_{3}Sn(Me_{3}Si)_{2}CSnMe_{2}C(SiMe_{3})_{2}Li$$

$$II \qquad III$$

$$NH_{4}Cl/H_{2}O$$

$$(Me_{3}Si)_{2}(Me_{3}Sn)CH + Me_{3}Sn(Me_{3}Si)_{2}CSnMe_{2}C(SiMe_{3})_{2}H$$

The reaction of I with two moles of bromine in refluxing methanol results in only partial methyl group cleavage from tin yielding IV.

The reaction of the bis-Grignard reagent $BrMg(CH_2)_4MgBr$ or magnesium cyclopentane with dimethyltin dichloride yields a 1:1 mixtures of dimethylstannacyclopentane V and polymeric products VI even under optimum reaction conditions. Treatment of 1,4-dibromobutane either with Me_2SnNa_2 in liquid ammonia or with Me_2SnLi_2 in THF or HMPT gave only traces of V:

$$\frac{\text{BrMg(CH}_2)_4 \text{MgBr}}{Me_2 \text{SnCl}_2} \xrightarrow{Me_2 \text{Sn}} + \frac{Me_2 \text{Sn(CH}_2)_4 \text{ n}}{\text{V}}$$

Dialkylstannacyclopentanes and -hexanes may, however, be obtained in high yields (>80%) by the disproportionation of α,ω -bis(trialkylstannyl)alkanes at 250-280°:

$$R_3 S_n (CH_2)_n SnR_3 \xrightarrow{\Delta} R_4 Sn + R_2 Sn (CH_2)_n n = 4, 5$$

The reaction is enhanced by ZnCl₂ or AlCl₃ catalysis, although these catalysts also facilitate ring-opening to afford polymeric species. 1,1-Dimethylstannacycloheptane is formed in only <u>ca</u>. 40% yield even when the reaction is performed in great dilution. Only traces of ring compound could be detected in the case of the corresponding stannacyclooctane.^{19,20}

The 'lithium-salt' method has, however, been employed successfully to prepare the more Sophisticated tin-containing carbocyclic compounds VII and VIII from Me₂SnCl₂ and the appropriate dilithium salt:

The stannacyclohexadiene IX has been obtained in 58-68% yields by the addition

246

of dibutyltin dihydride to the diynes (HC=C) CROMe:

$$Bu_{2}SnH_{2} + (HC \equiv C)_{2}CROMe \xrightarrow{MeC_{6}H_{9}}_{ABIBN} \xrightarrow{R} \underbrace{Sn}_{Bu_{2}} \xrightarrow{EX_{3}}_{E = P,As} \xrightarrow{E}_{E}$$

The compounds IX may be converted into substituted phospha- and arsabenzenes X by treatment with phosphorus or arsenic trihalides in the presence of triphenylphosphine²³.

The synthesis and reactivity of tetraorganostannanes containing a functional group in one alkyl chain continue to be investigated. Methyl-sulphoxides²⁴ and sulphones²⁵ protolyse the Sn-N bond of stannylamines affording the appropriate ~-stannyl derivatives:

$$Bu_{3}SnNEt_{2} + PhSO_{2}Me \longrightarrow Bu_{3}SnCH_{2}SO_{2}Ph \qquad (ref. 24)$$

$$Bu_{3}SnNMe_{3} + MeSOR \longrightarrow Bu_{3}SnCH_{3}SOR \qquad (ref. 25)$$

 $(\underline{N}-\underline{Alkyl}-\underline{N}-\underline{methylaminomethyl})$ tributyltin compounds, $\underline{Bu_3}SnCH_2NRMe$, from the reaction of $\underline{Bu_3}SnLi$ with either $\underline{N},\underline{S}$ -acetals, isoxazolidines, imidazolidines, or sodium $\underline{N},\underline{N}$ -disubstituted aminomethanesulphonates, exchange with butyl-lithium to afford the corresponding lithium derivative:²³¹

X = SMe, SPh, OMe, NR'Me₂, SO₃Ne; $R = PhCH_2$, Me₂NCH₂CH₂, Me(OCH₂CH₂)₃ References p. 346 α -Stannylamines have been used as a source of the CH₂NR¹₂ ligand in the formation of manganese carbonyl complexes:²⁶

$$R_{3}SnCH_{2}NR_{2}' + Mn(CO)_{5}Br \longrightarrow R_{2}'NCH_{2} Mn(CO)_{4}$$

R' = Me, Et, Pr, Bu, Me_{2}CHCH_{2}

248

Wardell has investigated α - and β -sulphur-substituted stannanes²⁷. The α -substituted compounds are available by metathesis of Ph₃SnLi and ClCH₂SC₆H₄Me-p and also of Ph₃SnCH₂X (X = Cl, I) and NaSC₆H₄Me-p:

Three routes to the β -substituted derivatives are available: (a) freeradical addition of $HSC_6H_4Me-\underline{p}$ to $Ph_3SnCH=CH_2$:

$$\frac{Ph_{3}SnCH=CH_{2}}{2} + \frac{HSC_{6}H_{4}Me-\underline{p}}{4} \xrightarrow{ABIBN} Ph_{3}SnCH_{2}CH_{2}SC_{6}H_{4}Me-\underline{p}$$

(b) free-radical addition of Ph_3SnH to $CH_2=CHSC_6H_4Me-\underline{p}$:

$$Ph_{3}SnH + CH_{2}+CHSC_{6}H_{4}Me-\underline{p} \longrightarrow Ph_{3}SnCH_{2}CH_{2}SC_{6}H_{4}Me-\underline{p}$$

and (c) from bis(triphenylstannyl)magnesium:

$$(Ph_{3}Sn)_{2}Mg + 2BrCH_{2}CH_{2}SC_{6}H_{4}Me-\underline{p} \longrightarrow Ph_{3}SnCH_{2}CH_{2}SC_{6}H_{4}Me-\underline{p}$$

<u>N-(2-Triphenylstannylethyl)amines XI may also be obtained by metathesis</u> from Ph₃SnLi and the appropriate 2-chloroethylamine in THF: PhySnLi + C1CH_CH_NRR' -----> PhySnCH_CH_NRR' + Ph_Sn_

R = R' = Me, Et, Ph; $R, R' = (CH_2CH_2)_20$; R = Me, MeCO, R' = Ph

Ph₃SnCH₂CH₂NHPh was isolated in low yield from the reaction of <u>N</u>-(2-chloroethyl)acetanilide with Ph₃SnLi. The same compound was also produced by either hydrolysis (alcoholic KOH) or reduction (LiAlH₄) of Ph₃SnCH₂CH₂NPhCOMe. Reconversion to the acetanilide derivative may be accomplished using acetic anhydride. The products of the reactions with methyl halides (MeX) and hydrogen halides (HX) varied with the substituents, R and R', and the reagents MeX and HX. The quaternary ammonium salts or amine hydrohalides XII produced from Ph₃SnCH₂CH₂NR₂ (R = Me, Et) and MeX or HX (X = Br, I) are unstable, and decompose by nucleophilic attack of X⁻ at tin forming Ph₃SnX, ethylene, and alkylamines:

The corresponding chlorides, XII (X = Cl), are stable, but are converted quantitatively to (2-alkylaminoethyl)phenyltin dichloride hydrochlorides XIII in the presence of excess HCl by electrophilic attack of H^+ on the phenyl groups.

$$Ph_3SncH_2CH_2NR_2H$$
 cl⁻ excess HCl \rightarrow cl₂PhSnCH₂CH₂NR₂H cl⁺ XIII

The reaction of \underline{N} -(2-triphenylstannylethyl)arylamines with HCl affords

mixtures of Ph_3SnCl , Ph_2SnCl_2 , $PhSnCl_3$ and <u>sec</u>-arylamines, as a result of competition between nucleophilic attack of Cl^- at the tin atom and the electro-philic attack of H^+ on the phenyl groups²⁸.

Dergunov <u>et al</u>. have studied the reactions of $Bu_3 Sn(CH_2)_3 NCO XIV$ with a variety of reagents. With water and isobutyl alcohol, 1,3-bis 3-(tributylstannyl)propyl urea XV and isobutyl[3-(tributylstannyl)propyl]carbamate XVI (R = ^{iso}Bu) are produced quantitatively:

$$\begin{bmatrix} \operatorname{Bu}_{3}\operatorname{Sn}(\operatorname{CH}_{2})_{3}\operatorname{NH} \end{bmatrix}_{2}\operatorname{CO} \xleftarrow{\operatorname{H}_{2}\operatorname{O}} \operatorname{Bu}_{3}\operatorname{Sn}(\operatorname{CH}_{2})_{3}\operatorname{NCO} \xrightarrow{\operatorname{ROH}} \operatorname{Bu}_{3}\operatorname{Sn}(\operatorname{CH}_{2})_{3}\operatorname{NHCO}_{2}\operatorname{R} \\ \operatorname{XV} \qquad \operatorname{XIV} \qquad \operatorname{XVI} \\ \end{array}$$

Reaction of XIV with phenol is slower, producing XVI (R = Ph) in 65% yield. With NH₃, Et₂NH, and PhNH₂, the urea derivatives XVII are formed:

$$xiv \xrightarrow{R_2NH} Bu_3 Sn(CH_2)_3 NH.CO.NR_2$$

$$xVII \qquad R_2 = H_2, Et_2, HPh$$

XIV itself spontaneously trimerises, albeit very slowly (8.2%. 10 hr, 100°) to give the isocyanurate XVIII.

The trimerisation is greatly accelerated in the presence of hexakishydroxymethylmelamine and ammonia. With allyl isocyanate, XIV forms the mixed isocyanurate XIX:²⁹

250

Ponmier and Kuivila have investigated the thermal decomposition of 4-tosyloxybutyltrimethyltin XX. The initial decomposition step involves dehydrotosylation to form toluenesulphonic acid and 3-butenyltrimethyltin. This reaction may be arrested if sodium carbonate or 2,6-lutidine is present to neutralise the evolved acid, but in the absence of base, secondary reactions take place leading to the formation of methylcyclopropane, 1-butene, methane, trimethyltin tosylate, and 3-butenyldimethyltin tosylate. Further reactions lead to the formation of tetramethyltin, dimethyltin ditosylate, and <u>cis</u>and trans- 2-butenes:³⁰

Poller has synthesised a number of 4-oxopentyltin compounds by initial protection of the carbonyl group in 1-chloropentan-4-one by dioxolan * formation. Reaction of the readily formed Grignard reagent XXI with Ph₂SnC1

gave XXII, but attempts to remove the protecting ethylenedioxy-residue using hydrochloric acid also resulted in cleavage of phenyl groups from tin giving Ph₂ClSnCH₂CH₂CH₂COMe. Successful conversion of XXII to the 4-oxopentyltin derivative XXIII was achieved using p-toluenesulphonic acid:

252

A similar procedure using Ph_2SnCl_2 afforded di(4-oxopentyl)diphenyltin XXIV and di(4-oxopentyl)tin dichloride XXV. Treatment of XXIV with bromine gave di(2-oxopentyl)tin dibromide XXVI; both XXV and XXVI formed 1:1 adducts with 2,2'-bipyridyl. The reaction of the Grignard reagent XXI with SnCl₄ afforded the expected tetrakis(ethylenedioxypentyl)stannane, but conversion to $Sn(CH_2CH_2CH_2COMe)_4$ was not successful. Spectroscopic data indicated intramolecular coordination of the carbonyl group to tin in the halogenotin derivatives⁵¹.

Methyllithium abstracts a boronic ester group from the bromomethanetriboronic ester, $BrC(BO_2C_2Me_4)_3$, to form the carbanion, $CBr(BO_2C_2Me_4)_2$, which reacts with $Ph_3SnCl:^{32}$

Trialkyltin-substituted pyridines react with (Me₃Si)₂Hg to give products of the type XXVII, which dissociate to give stable free-radicals of the type XXVIII³³.

α-Thienyltin compounds have been synthesised from α-thienylmagnesium iodide and tin halides³⁴.

Reaction of tin(IV) chloride with vinylmagnesium bromide gives $Sn(CH=CH_2)_4$ as the major product accompanied by some $Sn_2(CH=CH_2)_6^{35}$. A Russian patent reports the synthesis of vinyltin compounds by the treatment of alkyltin halides or alkylpolystannanes with alkali metal in liquid ammonia followed by the reaction of the resultant alkylstannide with acetylene or a vinyl halide³⁶. 2-Chlorovinyltributyltin has been obtained in 86% yield by the reaction of Bu₃SnH and (C1CH=CH)₂Hg:³⁷

Bu₃SnH + (C1CH=CH)₂Hg _____ Bu₃SnCH=CHC1

Vinyltin derivatives undergo epoxidation to give the corresponding stannyloxiranes on treatment with pertrifluoroacetic acid:³⁸

R₃SnCH=CH₂ сг₃со₂он $\longrightarrow R_3^{Sn}$ R = Me, Ph

Both <u>cis</u>- and <u>trans</u>-crotyltrimethyltin react with butyl- and methyllithium in ether to give crotyllithium in high yield. Further reaction of this reagent solution with Me₂SiCl in both cases gives a <u>ca</u>. 3/2 mixture of <u>trans</u>- and <u>cis</u>-crotyltrimethylsilane:

Me₃SnCH₂CH=CHMe BuLi LiCH₂CH=CHMe Me₃SiCH₂CH=CHMe cis or trans cis and trans

Analysis of the tin-containing product shows the formation of Me_4Sn and Me_2SnBu_2 in addition to the expected product Me_3SnBu , illustrating the presence of alkyllithium-promoted exchange equilibria. The addition of 10 mole % of BuLi or MeLi to isomerically pure <u>cis</u> or <u>trans</u> trimethylcrotyltin results in a rapid isomerisation yielding a 3/2 <u>trans/cis</u> ratio of trimethyl-crotyltin isomers. The isomerisation is also promoted by metallic lithium. In this case, a metal displacement mechanism is postulated, in which small amounts of crotyllithium are formed which can then equilibriate with the remaining trimethylcrotyltin:

MeCH=CHCH₂SnMe₃ + 2Li -----> MeCH=CHCH₂Li + Me₃SnLi MeCH=CHCH₂SnMe₃ + MeCH=CHCH₂Li -----> MeCH=CHCH₂SnMe₃ + MeCH=CHCH₂Li

The preferred method of generation of crotyllithium is from triphenylcrotyl-

254

tin and phenyllithium in ether. Tetraphenyltin precipitates in high yield leaving crotyllithium in solution:³⁹

Ph₃SnCH₂CH=CHMe + PhLi <u>ether</u> Ph₄Sn + MeCH=CHCH₂Li <u>cis/trans</u> mixture

<u>gem-Dichloroallyllithium</u> reacts with Me₃SnBr to give Me₃SnCH₂CH=CCl₂ in 97% yield. No evidence for the formation of Me₃SnCCl₂CH=CH₂ was obtained⁴⁰.

Allyltin compounds react with epoxides giving as the principal products alkoxytin derivatives produced from addition to the carbonyl compound resulting from isomerisation of the epoxide:

The reaction with <u>cis</u> and <u>trans</u> 1-phenyl-1,2-epoxypropane gives only a poor yield of <u>threo</u> and <u>erythro</u> isomers:⁴¹

threo and erythro

Guillerm <u>et al</u>. have demonstrated that propargyltin compounds can exist in equilibrium with their allenic isomers when the tautomerisation is catalysed by electron-donating solvents or by Lewis acids. The predominance of each particular isomer depends strongly on the substituents, eg:

Exchange of the unsaturated groups is apparent when a mixture of equal amounts of all four possible allenic products is obtained from ether mixtures of $Me_3SnCH_2C\equiv CD$ and $Et_3SnCH_2-C\equiv CH$ or $Me_3Sn-CD=C=CH_2$ and $Et_3=CH=C=CH_2$ in the presence of mercury(II) chloride:

and by the reactions:

The rate of the $Ph_3SnCH_2C \cong CH \implies Ph_3SnCH=C=CH_2$ interconversion is dependent on the solvent used and on added Lewis acid $(MgBr_2 HgCl_2$ $ZnCl_2$). In a variety of solvents used, the rate decreased in the order DMSO MeOH EtOH pyridine 2-methylpyridine, MeCN, PhCN, HMPT 2,2'dimethylpyridine, <u>t</u>-BuOH. An ion-pair mechanism involving solvent or Lewis acid was proposed⁴².

A patent reports the addition of mixed carbon tetrahalides across the C=C triple bond of alkynyltin compounds:⁴³

 $R_{3}SnC = CH + YCX_{3} \xrightarrow{UV} R_{3}SnCY = CHCX_{3}$ X, Y = C1, Br

The free-radical addition of butane thicl to triethylethynyltin affords a mixture of products:⁴⁴

$$Et_{3}SnC = CH + BuSH \xrightarrow{h \diamond} Et_{3}SnCH = CHSnEt_{3} + (Et_{3}Sn)_{2}C = CH_{2}$$

$$\underline{trans}$$

$$+ BuSCH = CHSBu + Et_{3}SnSBu$$

The alkynyl-tin bond of XXIX is cleaved by halogen in organic solvents: 45

$$R_{3}Sn-C \equiv C - CO_{2}SnR_{3} \xrightarrow{X_{2}} XC \equiv C - CO_{2}SnR_{3}$$

Ph_SnC=CPh displaces carbon monoxide from cpNb(CO)₄ forming XXX:⁴⁶

 $\begin{array}{rll} & \operatorname{Ph}_{3}\operatorname{SnC} \cong \operatorname{CPh} & + & \operatorname{cpNb}(\operatorname{CO})_{4} & \xrightarrow{\operatorname{pentane}} & \operatorname{cpNb}(\operatorname{CO})\left(\operatorname{Ph}_{3}\operatorname{SnC} \cong \operatorname{CPh}\right)_{2} \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & &$

Cyclopentadienyltin compounds and organotin chlorides undergo facile redistribution at room temperature to yield mixed cyclopentadienyltin chlorides:

$$RSnCl_{3} + 2RSncp_{3} \longrightarrow Rcp_{2}SnCl \quad (ref. 47)$$

$$90\%$$

$$2RSnCl_{3} + RSncp_{3} \longrightarrow RcpSnCl_{2} \quad (ref. 47)$$

$$95\%$$

$$R_{2}SnCl_{2} + R_{2}Sncp_{2} \longrightarrow R_{2}cpSnCl \quad (ref. 48)$$

$$100\%$$

$$R = Me$$

258

Carboxylic acids cleave cyclopentadienyl groups of cp₄Sn to give cyclopentadienyltin tris(carboxylates) XXXI:⁴⁹

$$cp_4Sn + 3RCO_2H \xrightarrow{90^\circ} cpSn(O_2CR)_3$$

 $R = Et, Me_2CH$ XXXI 95%

The treatment of the lithium salt XXXII with Ph₂SnCl in ether at -60° gives the complex XXXIII which undergoes Sn-cp bond cleavage with dry HCl.

After removal of the solvent from the solution of XXXIII, treatment of the

dry residue with NaMn(CO)₅ in THF gave an 8% yield of $(OC)_3$ Mn(C₅H₄)SnPh₃Mn(CO)₅. Ph₃Sn(C₅H₄)Re(CO)₃ is similarly cleaved by dry HCl affording cpRe(CO)₃.⁵⁰

Mixed alkylphenyltin dichlorides are conveniently prepared by the treatment of triphenylalkylstannanes with an ethereal solution of hydrogen chloride:²⁸

$$\frac{\text{HCl in ether}}{\text{Ph}_{3}\text{SnR}} \xrightarrow{\text{HCl in ether}} \text{RPhSnCl}_{2} + 2\text{PhH}$$

$$100\%$$

$$R = \text{Me, Et, }^{n}\text{Pr, }^{\text{iso}}\text{Pr, }^{n}\text{Bu, PhCH}_{3}$$

McLean has investigated the synthetic utility of the reaction of tetraorganostannanes with iodine monochloride and monobromides in CCl₄⁵¹. The following reactions gave very high yields of product, and were considered to be of preparative importance:

$$\begin{array}{rcrcrcrc} \mathrm{Ph}_{4}\mathrm{Sn} & + & 2\mathrm{ICl} & \underline{30^{\circ}/5 \ \mathrm{mins}} & \mathrm{Ph}_{2}\mathrm{SnCl}_{2} & + & 2\mathrm{PhI} \\ \mathrm{Ph}_{4}\mathrm{Sn} & + & \mathrm{IBr} & \underline{30^{\circ}/30 \ \mathrm{mins}} & \mathrm{Ph}_{3}\mathrm{SnBr} & + & \mathrm{PhI} \\ \mathrm{Ph}_{4}\mathrm{Sn} & + & 2\mathrm{IBr} & \underline{77^{\circ}/4 \ \mathrm{hr}} & & \mathrm{Ph}_{2}\mathrm{SnBr}_{2} & + & 2\mathrm{PhI} \\ \mathrm{Bu}_{4}\mathrm{Sn} & + & \mathrm{ICl} & \underline{30^{\circ}/30 \ \mathrm{mins}} & \mathrm{Bu}_{3}\mathrm{SnCl} & + & \mathrm{BuI} \\ \mathrm{Bu}_{4}\mathrm{Sn} & + & 2\mathrm{ICl} & \underline{30^{\circ}/30 \ \mathrm{mins}} & \mathrm{Bu}_{2}\mathrm{SnCl}_{2} & + & 2\mathrm{BuI} \\ \mathrm{Bu}_{4}\mathrm{Sn} & + & 2\mathrm{ICl} & \underline{30^{\circ}/15 \ \mathrm{mins}} & \mathrm{Bu}_{2}\mathrm{SnCl}_{2} & + & 2\mathrm{BuI} \\ \mathrm{Bu}_{4}\mathrm{Sn} & + & \mathrm{IBr} & \underline{30^{\circ}/5 \ \mathrm{mins}} & \mathrm{Bu}_{3}\mathrm{SnBr} & + & \mathrm{BuI} \end{array}$$

Cleavage of aryltrimethylstannanes by nitrosyl chloride followed by oxidation of the resulting nitroso compounds provides a useful route to some aromatic nitro compounds, eg:⁵²

Aromatic sulphenyl halides and thiocyanates, RSX, cleave aryl-tin bonds when the aryl groups contain a strongly electron-releasing group forming unsymmetrical sulphides:

$$Bu_3SnC_6H_4Y-\underline{p} + RSX \longrightarrow RSC_6H_4Y-\underline{p} + Bu_3SnX'$$
$$X = X' = C1, Br; X = SCN, X' = NCS; Y = OMe, OEt, OiPr, SMe$$

A much smaller yield (22%) of the appropriate sulphide was obtained when Y = Me. Cleavage of allyl groups from tin by <u>o</u>-nitrobenzene sulphenyl chloride occurs more readily than aryl-tin bond fission:

$$Ph_{3}SnCH_{2}CH=CH_{2} + \underline{o}-0_{2}NC_{6}H_{4}SC1 \longrightarrow Ph_{3}SnC1 + CH_{2}=CHCH_{2}SC_{6}H_{4}NO_{2}-\underline{o}$$

$$67\%$$

$$\underbrace{\text{trans-Ph}_{3}\text{SnCH}_{2}\text{CH=CHPh}}_{2} \xrightarrow{\underline{\circ}-0_{2}\text{NC}_{6}\text{H}_{4}\text{SC1}} \text{PhCH=CHCH}_{2}\text{SC}_{6}\text{H}_{4}\text{N0}_{2}-\underline{\circ}}$$

$$13\%$$

$$+ CH_{2}=CHCHPhSC_{6}H_{4}\text{N0}_{2}-\underline{\circ}$$

$$52\%$$

The reaction of $\underline{o}-0_2 NC_6 H_4 SC1$ with Ph₂SnCH=CH₂ gave both the cleavage and addition products:

$$\frac{Ph_{3}SnCH=CH_{2}}{44\%} \xrightarrow{\underline{O}-O_{2}NC_{6}H_{4}SC1} Ph_{3}SnCHClCH_{2}SC_{6}H_{4}NO_{2}-\underline{O}} + CH_{2}=CHSC_{6}H_{4}NO_{2}-\underline{O}}$$

Loss of ethylene occurs in the reaction with the β -stannylsulphide Ph₃SnCH₂CH₂SC₆H₄Ne-p:⁵³

$$\begin{array}{cccc} & & & & & \\ Ph_{3}Sn & & & \\ \hline C_{1} & S & \\ \hline C_{6}H_{4}No_{2}-\underline{o} \end{array} \xrightarrow{} & Ph_{3}SnC1 & \\ & & & \\ \hline SC_{6}H_{4}No_{2}-\underline{o} \end{array} \xrightarrow{} & \\ \hline C_{6}H_{4}No_{2}-\underline{o} \end{array}$$

Electrophilically-induced destannylation of alk-3-en-1yltin compounds has been employed in the synthesis of cyclopropylcarbinyl compounds. A variety of electrophiles, Cl_2 , Br_2 , I_2 , SO_3 , $HgCl_2$, SCl_2 , ArSCl, react with $R_3SnCH_2CH_2CH=CH_2$ compounds by initial addition to the double bond forming electron-deficient carbon atoms γ to tin. These incipient carbonium ions then electrophilically induce heterolytic fragmentations of the Sn-C bonds with concurrent ring formation:

In some cases, small amounts of R-Sn bond cleavage was detected, but use of tetra(but-3-enyl)tin gave surprisingly small yields (~50%). The reaction of norborn-2-en-5-yltributyltin XXXIV with 2,4-dinitrobenzenesulphenyl chloride in glacial acetic acid at 100° gave a 75% yield of the strained nortricyclic product XXXV:

с1806H3(NO2)2 XXXV XXXIV References p. 346

but bromination of cyclohex-3-en-1-yltributyltin at -65° only resulted in the bromination of the double bond:

262

Heating the adduct XXXVI to <u>ca</u>. 160⁰ caused fragmentation to give approximately equal quantities of <u>trans-2-bromobicyclo 3,1,0 hexane and 4-bromocyclo-</u>hexane; the latter compound probably arising from the rearrangement of the former:

An attempt to effect cyclodestannylation of 3-methyl-but-2-en-1-yltributyltin failed: instead an S_p2' reaction took place:

<u>m</u>-Chloroperbenzoic acid also does not induce cyclodestannylation. Rather reaction with XXXVII produced the epoxycompound XXXVIII. Cyclodestannylation could, however, be induced in XXXVIII by HCl, picrylsulphonic acid, $BF_{3}.0Et_{2}$, or methyl fluorosulphonate, or thermally:⁵⁴

 $Ph_3C^+ X^- (X = HgBr_3, ClO_4, ZnCl_2Br)$ salts abstract hydrogen from tetraorganostannanes XXXIX giving Ph_5CH and mixtures of alkenes:⁵⁵

 $Ph_{3}C^{+}X^{-} + RCH_{2}CHMeSnR_{3}^{+} \xrightarrow{CH_{2}Cl_{2}} Ph_{3}CH + RCH_{2}CH=CH_{2} + RCH=CHMe$ $75-95\% \qquad cis + trans$

Tetraphenyltin undergoes complete dearylation by alkali metal amides in liquid ammonia to afford the amido-stannates XL:⁵⁶

$$Ph_{4}Sn + MNH_{2} \xrightarrow{liq. NH_{3}} M_{2}Sn(NH_{2})_{6}$$

$$M = K, Rb, Cs \qquad XL$$

Several kinetic studies of Sn-C bond cleavage have been reported. Eaborn <u>et al</u>. have studied solvent isotope effects in various systems. For the cleavage of the aryl-tin bond of $X \cdot C_6H_4 \cdot SnMe_5$ compounds by sodium methoxide in methanol at 21°, the kinetic data indicate the reaction sequence:

264 $MeO^{-} + Me_{3}Sn_{6}C_{6}H_{4}X \iff (MeO)Me_{3}Sn_{6}C_{6}H_{4}X \qquad XLI \quad (fast)$ $(Me0)Me_3Sn_*C_6H_4*X + MeOH \longrightarrow (Me0)Me_3Sn_*C_6H_5*X + MeO^*$ TTT (slow) $(MeO)Me_zSn - C_cH_c^+ X \longrightarrow MeOSnMe_3 + C_cH_5X$ (fast)

in which proton transfer from the solvent to the carbon atom of the Sn-aryl bond in involved in the rate-determining step, which is probably the conversion of the pentavalent species XLI into the Wheland intermediate XLII.⁵⁷

XLII

In the cleavage of $XC_{6}H_{4}SnMe_{3}$ compounds by acetic acid at 50°, the data suggest that proton transfer to form the Wheland intermediate is rather more than half complete⁵⁸. The cleavage of the benzyl-tin bond by sodium methoxide in methanol⁵⁹, excess trifluoroacetic acid in benzene⁶⁰, and also by aqueous methanolic perchloric acid⁶¹ has been investigated. Solvent isotope effects in the cleavage of the substituted benzyl-tin compounds $XC_{6}H_{4}CH_{2}SnMe_{3}$ by sodium methoxide in methanol indicate that a free carbanion is not formed, but favour a rate-determining step again involving proton transfer from the solvent to the carbon atom af the breaking $Sn-CH_{2}C_{6}H_{4}X$ bond, with the MeO-Sn bond fully or almost fully formed in the transition state. Initial formation of the pentavalent intermediate $\left[(MeO)Me_{3}Sn.CH_{2}.C_{6}H_{4}.X^{-}\right]$ is proposed⁵⁹. Both benzyl-tin and methyl-tin bond cleavage is observed in the cleavage with trifluoroacetic acid in benzene, although the rate of disappearance of stannane is strictly firstorder. For the <u>m</u>- and <u>p</u>-CF₃, <u>p</u>-Me and <u>p</u>-OMe-substituted compounds, a transition state XLIII is proposed in which C-H bond formation is well advanced and oxygen coordination of the molecular acid to the tin being important.

265

XLIII

The rates for the m-Me and m-OMe substituted derivatives are abnormally fast and are not accompanied by any Sn-Me bond cleavage, and in these cases a mechanism involving protonation of the ring was proposed:

Brominolysis of XLIV also results in ring substitution by an analogous mechanism⁶⁰.

Very similar results were obtained for the cleavage of $XC_{6}H_{4}CH_{2}SnMe_{3}$ compounds by aqueous methanolic perchloric acid. For X = H, p-Me, o-Me, p-^tBu, o-, m- and p-F and -Cl, and o-Br, the cleavage of the benzyl-tin bond involves attack of the acid at the benzylic carbon atom, and is not much faster than Sn-Me bond cleavage, but the ring-protonation mechanism

Me₃SnBr + Unreacted XLIV

is important for $X = \underline{m}$ -Me, and greatly predominant for $X = \underline{m}$ -OMe⁶¹. The second-order rate constants for the S_E^2 substitution of tetraethyltin by mercury(II) carboxylates, $Hg(O_2CR)_2$, in methanol increase along the series $R = {}^tBu < Et < Me < Ph < ClCH_2CH_2 < MeOCH_2 < ClCH_2$. Ca. 60% of the reaction takes place through the species $Hg(O_2CR)_2$. Rate constants for attack of $Hg(O_2CR)_3^-$, $Hg(O_2CR)_2$, and $Hg(O_2CR)^+$ are in the order 0:1:10². The substitution by $Hg(O_2CR)_2$ in methanol was deduced to take place via a $S_E^2(open)$, rather than a cyclic, transition state.⁶² Kinetic and product studies of the solvolysis of $\delta - R_3$ Sn-substituted sulphonates indicate a concerted 1,3-elimination mechanism rather than reaction pathways involving intermediate ions or ion-pairs⁶³.

3. HYDRIDES.

References p. 346

The molecular structures of Me_3SnH and Me_2SnH_2 have been studied by gas phase electron diffraction. Both molecules are approximately tetrahedral with Sn-C bond distances of 2.147(4)A $\left[Me_3SnH\right]$ and 2.150(3)A $\left[Me_2SnH_2\right]$ and Sn-H bond distances of 1.705(67)A $\left[Me_3SnH\right]$ and 1.680(15)A $\left[Me_2SnH_2\right]^{64}$.

The 1,4-concerted addition of Me_3 SnH to the singlet excited penta-1,3-dienes yield both <u>cis</u>- and <u>trans</u>-adducts XLVa and XLVb according to a stereochemistry which is incompatible with an allylmethylene relaxed

configuration, and suggests a doubly twisted state⁶⁵. Triorganotin hydrides add to the C=C triple bonds of alkynylamines⁶⁶ and propargyl glycidyl ether⁶⁷ to yield $R_3SnCR'=CHNEt_2$ compounds and 1-(trialkylstannyl)-3-(glycidyloxy)propene, respectively. Knocke and Neumann have demonstrated that small amounts of mixtures of $R_2Sn(0R')_2$ and R_2SnX_2 (X = halide, acylate, or acetylacetonate) strongly accelerate the addition of R_2SnH_2 to aldehydes and ketones. A mechanism involving the intermediacy of the mixed species $R_2Sn(0R')X$ and $R_2Sn(0R')H$ was proposed.

The same systems also catalyse the addition of R_2SnH_2 and R_3SnH to cyclohexanone yielding the alkoxides XLVI in high yield⁶⁸.

$$R_{4-n}S_{n}S_{n}H_{n} + nC_{6}H_{10}O \longrightarrow R_{4-n}S_{n}(OC_{6}H_{10})_{n}$$

n = 1,2 XLVI

The Bu₂SnH-reduction of benzyl and cyclohexylchloroformates under free-radical conditions (ABIBN/hexane) affords toluene and cyclohexyl formate, respectively, as the only product in each case. Rationalisation of these results in terms of the alkoxycarbonyl radical XLVII is consistent, since its rate of fragmentation is determined by the stability of the incipient radical R. Thus, in the case of $R = PhCH_2$, decarboxylation to PhCH₂• is favoured, and toluene is formed, whilst, when $R = C_6H_{11}$, the $C_6H_{11}OC^{\circ}$ survives to be reduced⁶⁹.

Pereyre has determined the stereochemistry of the reduction of acyclic ketones by Bu₃SnH under both ionic and free-radical conditions. The stereochemistry of the products is little affected by the mechanism of the hydrostannation, and the stereochemistry in both cases is minor⁷⁰. The reaction of Bu₃SnH with cyclopropyl-⁷¹ and cyclobutylketones⁷² under free-radical conditions lead to both cyclic and acyclic products. At 80°, cyclopropylketones give exclusively ring-opening:

268

but at 25°, cyclopropanoxytributyltin is obtained:

These results are consistent with a mechanism involving the rearrangement of the intermediate radical:

Cyclobutylketones also give both reduction and ring-opening by an identical mechanism:

The amount of ring-opening increases with increase in temperature, diminution in hydride concentration, and is also favoured when $R = Ph.^{72}$ Complete loss of stereochemistry occurs during the $Bu_{3}SnH$ -reduction of 2-substituted 2-halonorbornanes⁷³. The extent of aryl group migration from silicon to carbon during the $Bu_{3}SnH$ -reduction of χ -silyl halides:

270

 $\texttt{ArMe}_2\texttt{SiCH}_2\texttt{CH}_2\texttt{CH}_2\texttt{X} \xrightarrow{\texttt{Bu}_3\texttt{SnH}/\texttt{DTBP}} \texttt{ArMe}_2\texttt{SiCH}_2\texttt{CH}_2\texttt{Me} + \texttt{HMe}_2\texttt{SiCH}_2\texttt{CH}_2\texttt{CH}$

depends on the halogen in the order Cl Br, the effect being more pronounced at higher reactant concentrations. In order to rationalise this observation, the rearranged radical XLV was proposed also to arise directly from the y-silyl chloride but not the bromide:⁷⁴

XTA

The addition of a very small excess of Bu₃SnH to a solution of dichlorocyclopropenyl hexachloroantimonate in tetramethylene sulphone solution gives 1,2-dichlorocyclopropene as the only reduction product:³⁰⁴

In contrast, the reduction of 1,2,3-trichlorocyclopropene by Bu₃SnH under free-radical conditions affords a mixture of 1,3- and 3,3-dichlorocyclopropenes. The different behaviour was attributed to contrasting substituent effects of chlorine in the stabilisation of the two transition states. In the radical intermediate, the chlorine atom stabilises the radical localised on an adjacent carbon atom, reaction with which Bu₃SnH will produce 1,3dichlorocyclopropene. In the corresponding cation however, a localized transition state for hydride transfer will preferentially put positive charge on the carbon atom bearing hydrogen, not chlorine.³⁰⁴

4. HALIDES.

As usual, considerable attention has been devoted to the synthesis of organotin halides. Several patents report procedures for the 'direct' synthesis of organotin halides from metallic tin and alkyl halide in the

presence of various catalyst systems⁷⁵⁻⁷⁷, whilst one describes an apparatus for their continuous preparation by percholating alkyl halide or epichlorohydrin through a column containing tin granules and interstitial phosphonium or ammonium salt as catalyst⁷⁸. The 'direct' synthesis of butyltin bromides from elemental tin and butyl bromide in the presence of various catalysts has been investigated in detail. Tetraalkylammonium salts were found to be the most efficient catalysts, giving quantitative or near-quantitative conversion of tin in 24 hrs at 101° in the presence of iodine. The following reaction scheme was proposed for the catalysis:⁷⁹

272

The alkylation of tin(II) halides has also been studied as a route to monoorganotin trihalide derivatives. Dialkylmercurials react with tin(II) fluoride to form RSnF₃ compounds:⁸⁰

$$R_2H_g + SnF_2 \longrightarrow RSnF_3$$

R = Et, Pr, Bu, Me(CH₂)₄, Me(CH₂)₅

Methyltin trichloride may be obtained in high yield by the reaction of tin(II) chloride and methyl chloride using cyclic sulphones as solvents

at <u>ca</u>. 160-180[°] in the presence of Bu_{3}^{P} , iodine, and FeCl₃ as catalysts⁸¹. The reaction of tin(II) halides with halomethylsilanes at 140-180[°] in a solvating solvent or in an inert gas affords $\text{H}_{3}^{SiCH}_{2}^{SnX}_{3}^{82}$. Chloromethylsilane compounds in general react similarly with tin(II) chloride in the absence of catalysts in solvating solvents such as THF or DME:

273

$$RR'R"SiCH_2Cl + SnCl_2 \xrightarrow{140-200^{\circ}} RR'R"SiCH_2SnCl_3$$

R, R', R" = R, Ar, R0

Chloro(chloromethyl)silanes react analogously with SnCl₂, but the corresponding trichloro(chlorosilylmethyl)stannanes could not be isolated because of reaction with the ether solvent. These compounds, however, could be obtained using 'onium salts as catalysts with the exclusion of solvating solvents:

 $Cl_{n} \stackrel{Me}{_{3-n}SiCH_{2}Cl} + SnCl_{2} \xrightarrow{R_{4}EX} Cl_{n} \stackrel{Me}{_{3-n}SiCH_{2}SnCl_{3}}$ E = N, P, As, Sb; X = Cl, Br; n = 1, 2, 3

The preparation of $Cl_3SiCH_2SnCl_3$ was accompanied by the formation of some $(Cl_3SiCH_2)_2SnCl_2$, which was characterised by further methylation:⁸³

$$\begin{array}{c} \text{Cl}_{3}\text{SiCH}_{2}\text{SnCl}_{2} \\ \text{Cl}_{2} \\ \text{Cl}_{3} \\ \text{Cl}_{3}\text{SiCH}_{2}\text{SnCl}_{2} \end{array} \xrightarrow{\text{SnCl}_{4}} (\text{Cl}_{3}\text{SiCH}_{2})_{2}\text{SnCl}_{2} \xrightarrow{\text{MeMgBr}} (\text{Me}_{3}\text{SiCH}_{2})_{2}\text{SnMe}_{2} \\ \text{Cl}_{3}\text{SiCH}_{2}\text{SnCl}_{3} \\ \text{Cl}_{3} \\ \text{SiCH}_{2}\text{SnCl}_{3} \end{array}$$

The decomposition of TiPh₄ at room temperature in the presence of tin(II) chloride affords a mixture of phenyltin(IV) chlorides:

The analogous decomposition in the presence of hexaphenylditin gave TiPh_3 (85%), benzene, biphenyl, and Ph_4Sn^{84} .

Alkylation and dealkylation of (organo)tin(IV) halides has been employed particularly in the synthesis of monoorganotin trihalides and mixed tri- and diorganotin halides:

$$\begin{aligned} & \operatorname{SnCl}_{4} + \operatorname{R}_{2}\operatorname{AlOR'} \text{ or } \operatorname{ClalROR'} \longrightarrow \operatorname{RSnCl}_{3} & (\operatorname{ref. 85}) \\ & \operatorname{R'SnCl}_{3} + \operatorname{Me}_{3}\operatorname{SiR} \xrightarrow{\operatorname{AlCl}_{3}}_{\operatorname{catalyst}} \operatorname{RR'SnCl}_{2} & (\operatorname{ref. 86}) \\ & \operatorname{SnX}_{4} + (\operatorname{PhCH}_{2})_{2}\operatorname{Hg} \xrightarrow{\operatorname{benzene}} \operatorname{PhCH}_{2}\operatorname{HgX} + \operatorname{PhCH}_{2}\operatorname{SnX}_{3} & (\operatorname{ref. 87}) \\ & \operatorname{X} = \operatorname{Cl}, \operatorname{Br}, \operatorname{I} & \\ & \operatorname{SnCl}_{4} \xrightarrow{\operatorname{C}_{6}\operatorname{H}_{11}\operatorname{MgX}}_{\operatorname{SnCl}} & (\operatorname{C}_{6}\operatorname{H}_{11})_{3}\operatorname{SnOH} & (\operatorname{ref. 88}) \\ & \operatorname{R}_{3}\operatorname{SnCl} & \operatorname{R}_{3}\operatorname{R'Sn} & \\ & \operatorname{or} & -\operatorname{R'MgCl} & \operatorname{or} & -\operatorname{SnCl}_{4} & \operatorname{R}_{2}\operatorname{R'SnCl} & (\operatorname{ref. 89}) \\ & \operatorname{R}_{2}\operatorname{SnCl}_{2} & \operatorname{R}_{2}\operatorname{R'}_{2}\operatorname{Sn} & \\ & \end{array} \end{aligned}$$

$$R_2 SnX_2 + X_2 \longrightarrow RSnX_3$$
 (refs.90,91)
 $R = C_1 - C_{20}; X = Cl, Br, I$

$$R_{2}SnI_{2} + I_{2} \xrightarrow{8 \text{ hr}} RSnI_{3} \xrightarrow{\text{NaOH/H}_{2}0} RSn(0H)0 \xrightarrow{\text{HCl}} RSnCl_{3}$$

$$R = Bu, (CH_{2})_{7}Me, CHMe_{2} \quad (ref. 90)$$

Substituted monoaryltin trichlorides have also been obtained by diazotisation of the appropriate substituted aniline, followed by subsequent stannylation using SnCl₄⁹². Dichlorocarbene, derived from PhHgCCl₃, inserts into the Sn-Br bond of tin(IV) bromide. The actual product isolated, however, was XLVI due to halogen exchange:⁹³

275

Monoorganotin trifluorides may be obtained in high yield by treating the corresponding tris(carboxylates) with HF in benzene:⁹⁴

 $RSn(0_2CR')_3 + 3HF \xrightarrow{benzene} RSnF_3 + 3R'C0_2H$ R = alkyl, aryl, alkenyl; R' = alkyl

Seyferth has described an improved synthesis of $Me_2Sn(CH_2I)I$ by the reaction of Me_2SnCl_2 with one mcle of $IZnCH_2I$ in THF. The formation of the organotin iodide rather than the chloride is rationalised in terms of halogen exchange between tin and zinc. With magnesium metal in THF, $Me_2Sn(CH_2I)I$ reacted readily to give hexamethyltristannacyclohexane in 22% yield. The involatile residue from this reaction appeared to be material of composition $(Me_2SnCH_2)_n$:³⁰²

 $\frac{\text{Me}_2\text{SnCl}_2}{\text{THE}} \xrightarrow{\text{IZnCH}_2\text{I}} \frac{\text{Me}_2\text{Sn}(\text{CH}_2\text{I})\text{I}}{\text{THE}} \xrightarrow{\text{Me}_2\text{SnCH}_2\text{I}}$

The molecular structures of MeSnCl₃ and Me₃SnCl in the gas phase have been reinvestigated by electron diffraction. Both compounds are approximately tetrahedral, and have very similar Sn-C bond distances 2.108(6)A (Me₃SnCl) and 2.105(16)A (MeSnCl₃). Increased chlorine substitution leads to a contraction of the Sn-Cl bond distance 2.354(8)A (Me₃SnCl) and 2.306(3)A (MeSnCl₃)]⁶⁴. ¹H and ¹¹⁹Sn nmr data indicate that rapid exchange of halogen and SMe groups takes place at room temperature in binary mixtures of $Me_{d-n}SnX_n/Me_{d-n}Sn(SMe)_n$ (X = halogen, n = 1-4). The rate of exchange is slowest when $X = I^{95}$. Birchall <u>et al</u>. have studied the solvolysis of methyltin chlorides $Me_{4-n}SnCl_n$ in highly acidic media using nmr and Mössbauer spectroscopy. Solvated cations such as $|Me_3Sn|^+$, [Me₂Sn]²⁺, [MeSnCl₂]⁺, and [MeSnCl]²⁺ were detected⁹⁶. The formation of complexes between alkyltin(IV) cations and fluoride ions has been studied in a constant ionic medium (1M NaClO₄) at 25⁰ by potentiometric and solubility methods. In the concentration range examined only mononuclear complexes were found⁹⁷. Treatment of the lithium salt XLVII with Ne₃SnCl leads to a mixture of C- and O-stannylated isomers XLVIIIa and XLVIIIb. The same product mixture is obtained by treating the ylid-Me₃SnCl complex IL with butyllithium:

276
Elimination of Me₃SnOMe occurs during the reaction of Me₃SnCl with the lithium salt L:

whilst during attempted complex formation between the disubstituted ylid LI and Me_3SnCl , the complex Me_3SnCl . OPPh₃ was formed:⁹⁸

The complexation of methyltin halides in donor solvents such as acetone, dioxan, DME, pyridine, DMF, DMSO, HMPT, and tetramethylethylenediamine have been studied by means of ¹H nmr spectroscopy, and equilibrium constants evaluated for the Me₃SnX.D complexes⁹⁹. The Me₃SnCl₃⁻ anion has been obtained as the tetramethylammonium salt by heating a mixture of Me₄NCl and excess Me₃SnCl in a sealed tube at 140° for 4 hrs. The complex is stable when stored under anhydrous conditions, but probably releases chloride in solution. The Mössbauer data are consistent with T-shaped SnCl₃ units in an octahedral configuration.¹⁰⁰ Elegbede and McLean have prepared the 1:1 complexes Ph₃SnX.HMPA (X = Cl, Br, I, N₃, CN). Reaction of the Fh₃SnCl.HMPA complex with F⁻ or OH⁻ ions caused dissociation to give Ph_3SnF and Ph_3SnOH , respectively but exchange occurred with I⁻ and N_3^- giving the corresponding Ph_3SnX .HMPA (X = I, N_3) complexes. No reaction occurred with Br⁻ or CN⁻¹⁰¹.

The crystal structure of Ph_2SnCl_2 bipyridyl shows that the tin atoms are octahedrally coordinated with <u>trans</u> phenyl groups (Sn-C = 2.152Å) and <u>cis</u> chlorine atoms (Sn-Cl = 2.509Å) (Fig. 2). The bipyridyl group is not planar, one C_5H_4N ring is slightly twisted (4.2°) with respect to the other, with the two Sn-N bond distances being unequal (2.344 and 2.375Å)¹⁰². The similar complex Ph_2SnCl_2 .2DMSO has an almost identical structure (Fig. 3) with Sn-C = 2.116Å, Sn-Cl = 2.474, 2.355Å and Sn-O = 2.355 and 2.280Å. One of the methylsulphoxide groups is disordered into two positions¹⁴⁸. Novel 1:1 adducts

Fig. 2. The molecular structure of Ph₂SnCl₂. bipyridyl. (Reproduced by permission of the Chemical Society).
Fig. 3. The molecular structure of Ph₂SnCl₂.2DMS0.

have been obtained from the nickel complex $\underline{N}, \underline{N}'$ -ethylenebis(salicylideneiminato)nickel(II) (Nisalen) with di- and monoorganotin(IV) chlorides. Spectroscopic data show that the square planar configuration around nickel is maintained, and the coordination to tin involves 3-coordinate phenolic oxygen atoms resulting in octahedrally-coordinated tin¹⁰³. The <u>trans-R₂</u>, <u>cis-Cl₂</u> configuration deduced spectroscopically for the R₂SnCl₂Nisalen complex has been confirmed when R = Me by a crytsallographic study¹⁰⁴. The structure is shown in Fig. 4, and is distorted significantly from regular octahedral coordination (CSnO = 161.0(7)°, OSnO = 61.3(3)°). The two Sn-C distances are equal (2.12₅(1)Å), but the Sn-O and Sn-Cl distances are not equivalent $\begin{bmatrix} Sn-O = 2.4O, 2.55(1)Å; Sn-Cl = 2.4O3, 2.523(4)Å \end{bmatrix}$. Far-infra-red spectra of the complexes $Ar_2SnX_2.2L$ (Ar = aryl; X = Cl, Br, I; L = amide) indicate <u>cis</u>-aryl and <u>trans</u>-halogen arrangements about tin. The amide is coordinated via the carbonyl oxygen rather than the nitrogen atom¹⁰⁵. Mono-, di-, and triethanolamines form complexes of the general type $Ar_2SnX_2.nL$

280 (Ar = aryl, n = 1 for L = MEA and DEA, and n = 2 for TEA) with diaryltin dihalides. Again a <u>cis</u>-aryl-<u>trans</u>-halogen arrangement about octahedral tin is indicated. Both MEA and DEA function as bidentate ligands, bonding through both oxygen and nitrogen atoms, whilst TEA acts as a unidentate ligand via the oxygen atom¹⁰⁶.

5. PSEUDOHALIDES.

Crystals of triphenyltin isothiocyanate consist of infinite zigzag =S...Sn-N=C=S...Sn- chains similar to those in Me₃SnNCS, but with slightly longer Sn-N (2.22(5)Å), shorter Sn-S (2.92(6)Å) bond distances, and almost planar SnC₃ units (Sn-C =2.09(3)Å) (Fig. 5)¹⁰⁷.

Fig. 5. The asymmetric unit of Ph_2SnNCS projected perpendicular to \underline{Y} .

Tributyltin isocyanate reacts with cyanamide in triethylamine to form bis(tributyltin)carbodiimide and a mixture of triggines¹⁰⁸.

Dergunov <u>et al</u>. have studied the thermal decompositions of R_3 SnNCO and R_3 SnN=C=NSnR_3 (R = Bu, Ph). Bu₃SnNCO decomposes to metallic tin, CO, N₂, butane, and butylene:

In contrast, Ph_SnNCO undergoes disproportionation:

$$Ph_3SnNCO \xrightarrow{200^\circ} Ph_4Sn + Ph_2Sn(NCO)_2$$

70-73%

Similarly, Bu₃SnNCNSnBu₃ decomposes at 250-270⁰ to metallic tin and a mixture of butane and butylene, but only Ph₄Sn (90%) was isolated from the thermolysis of Ph₃SnNCNSnPh₃¹⁰⁹. Pseudohalide derivatives of the type $R_n Sn[C(CN)_2COMe]_{4-n}$ may be obtained from the organotin chloride and the silver salt AgC(CN)₂COMe in acetone. Triphenyltin acetyldicyanomethanide results from the reaction of dicyanoacetone and tetraphenyltin in CCl₄. The Mössbauer spectra of the pseudohalide derivatives Ph₃SnX [X = NCC(CN)₂, NCNCN, ONC(CN)₂, C(CN)₂COMe, Et₃Sn C(CN)₂COMe], Me₂SnX₂ [X = NCNCN, C(CN)₂COMe], and (Bu₂SnNCN)₄ indicate polymeric structures with coordination numbers greater than four. The spectrum of (PhCH₂)₂Sn[C(CN)₂COMe]₂ shows two different types of tin ascribed to the presence of six-coordinate polymeric and four-coordinate monomeric species¹¹⁰.

Triphenyltin cyanamide reacts with acyl chlorides, chlorocarbonates, and benzenesulphonyl chloride in the presence of excess triethylamine to give high yields of the corresponding triethylammonium (organocyanoamino)chlorotriphenylstannates LII:

$$Ph_{3}SnNHCN + RC1 + NEt_{3} \longrightarrow Et_{3}^{+} \left[Ph_{3}Sn(C1)\left[N(CN)R\right]\right]$$

$$R = MeCO, EtCO, PhCO, MeOCO, EtOCO,$$

$$PhCH_{2}OCO, PhSO_{2}$$

LII (R = MeCO) was also obtained from the reaction of NEt₃H Cl⁻ with $Ph_3SnN(CN)COMe$, itself prepared by treating $Ph_3SnNCNSnPh_3$ with MeCOCl:

The Mössbauer spectra indicate the five-coordinate trigonal bipyramidal structure LIII for the complexes¹¹¹.

5. OXIDES, ALKOXIDES, AND RELATED DERIVATIVES.

Tetrabuty1-1,3-diacyloxydistannoxanes $(RCO_2)Bu_2SnOSnBu_2(O_2CR)$ LIV and/or tetrabuty1-1-acyloxy-3-hydroxydistannoxanes $(RCO_2)Bu_2SnOSnBu_2OH$ LV may be prepared from equimolecular amounts of dibutyldiallyltin and the carboxylic acid RCOOH (R = H, Me, CH₂Cl, CHCl₂, CCl₃, CF₃) in moist methanol or acetone/water (50/50). Isolation of compounds LIV or LV depends on the hydrolysing power of the medium and the nature of R¹¹². The solid-state structures of $(Me_3Sn)_2(OH)N_3$ and hexamethy1-1,5-diazidotristannoxane have been investigated by Mössbauer, infra-red and Raman spectroscopy. Proposed structures are shown in Fig. 6. $(Me_3Sn)_2(OH)N_3$ is thought to consist of infinite chains of planar Me₃Sn groups bridged alternately by OH and N₃ groups. Hydrogen bonding links adjacent chains. The diazidotristannoxane is considered to be dimeric through oxygen and terminal azide bridges. All the tin atoms are five coordinate¹¹³. Hexaethyldistannoxane and its chloro-

(a)

Fig. 6. Proposed structures for (a) $(Me_{3}Sn)_{2}(OH)N_{3}$ and (b) $N_{3}Me_{2}Sn\left[OSnMe_{2} 2N_{3}\right]2^{\circ}$

derivatives react with lactones containing four to seven-membered rings to form 1:1 adducts with ring-opening. With Et₃SnOSnEt₃, the adduct formed LIV is thermally unstable, and reverts to the reactants on attempted

·(b)

distillation, but treatment with either one or two moles of acetyl chloride yields the isolable mono- or diacetate:

 $Clet_2Sn0SnEt_2Cl$ reacts similarly giving $Clet_2Sn0(CH_2)_nCO_2SnEt_2Cl$, which could also be converted to the diacetate. The reaction with chloropenta-ethyl distannoxane appeared to proceed largely to form LV:

but the reaction of β -propiolactone and $Cl_2EtSnOSnEt_2Cl$ gave approximately equal amounts of LVI and LVII:

Kinetic measurements of the reactions gave the following orders of reactivity: ϵ -caprolactone > β -valerolactone > β -propiolactone > β -butyrolactone;

Cl₂EtSnOSnEt₂Cl>Et₃SnOSnEt₃>ClEt₂SnOSnEt₃>ClEt₂SnOSnEt₂Cl; monomeric > dimeric stannoxanes; and non-polar>polar or basic solvent¹¹⁴. Heating mixtures of bis(trialkyltin) oxides and bis(trialkylgermyl) oxides affords mixed germastannoxanes LVIII:

$$(R_3Sn)_2O + (R_3Ge)_2O \longrightarrow 2R_3SnOGeR_3'$$

R = Bu; R' = Me, Bu

The reaction of hexabutylgermastannoxane with phenyl isocyanate and chloral is considered to take place exclusively at the Sn-O bond:^{115,116}

Similarly, Bu₃SnOSiMe₃ was also considered to react with PhNCO solely at the Sn-O bond:¹¹⁷

Bu₃SnOSiMe₃ + PhNCO ----> Bu₃Sn.NPh.CO.OSiMe₃

The addition reactions of monoorganotin tris(alkoxides) and alkoxide halides with isocyanates and isothiocyanates, and of dibutyltin glycolates have been briefly reported:¹¹⁷

$$RSn(0^{i}Pr)_{3} + nR'NCE \longrightarrow RSn(NR'.CO.0^{i}Pr)_{n}(0^{i}Pr)_{3-n}$$

$$RSn(0^{i}Pr)_{3-n}Cl_{n} + (3-n)PhNCO \longrightarrow RSn(NPh.CO.0^{i}Pr)_{3-n}Cl_{n}$$

$$R = Et, Bu; R' = Ph, \alpha - Np; E = 0, E$$

Tributyltin methoxide adds to arenesulphonyl isocyanates to form the adducts LIX as a tautomeric mixture:

The adducts undergo protolysis with both acetic acid and dipropylamine¹¹⁸. Bis(tributylstannyl)mercaptoethanolate reacts with isothiocyanates at room temperature to afford an adduct LXI, which eliminates bis(tributyltin) sulphide on heating:

Treatment of LX with CS, for 20 hrs at 60° yielded ethylene dithiocarbamate

The formation of identical products, bis(tributyltin) sulphide, and ethylene sulphide, from both the thione-carbonate and bis(tributylstannyl)mercaptoethanolate, and from the dithiocarbonate and bis(tributylstannyl)glycolate suggests that the spiro compound LXII is a common intermediate. Attempts to isolate LXII failed¹¹⁹.

287

Diorganotin oxacyclopentanes and pentenes react with dialkyldichlorosilanes or germanes with Sn-O bond fission:

Heating the linear derivatives LXX and LXXI above <u>ca</u>. 130° causes cyclisation with the elimination of Bu₂SnCl₂:¹²¹

2',3'-O-(dibutylstannylene)nucleosides LXXII have been obtained as crystalline solids by heating methanol suspensions of the nucleoside and dibutyltin oxide:

The derivatives LXXII react with acyl, alkyl, sulphonyl, and phosphonyl chlorides resulting in preferential substitution at the 2'(3') positions, with no substitution at the 5 position:

289

Bis(trialkyltin)nucleoside 5'-phosphates LXXIIIa and LXXIIIb result from reaction of bis(tributyltin) oxide and the nucleoside 5'-phosphate¹²².

The structure of trimethyltin methoxide consists of chains of methoxy-bridged planar trimethyltin groups $\left[\operatorname{Sn-C} = 2.14(2)\]$; Sn-O = 2.23(3)]; OSnO = 172.4(7)^o; SnOSn' = 131.2(12)^o (Fig. 7)¹²³. Van den Berghe and van der Kelen have investigated the structure of methyltin alkoxides Me_{4-n}Sn(OR)_n

Fig. 7. The repeat unit of the chains of Me_SnOMe . (Reproduced with permision from Acta Cryst.).

(n = 1-3; R = Me, Et) by ¹H and ¹¹⁹Sn nmr. The trimethyltin alkoxides are monomeric and tetrahedral in solution, but the data for the dimethyltin dialkoxides and methyltin tris(alkoxides) indicate the presence of polymeric species such as LXXIX¹²⁴.

TXXIX

 $R^{t} = Me$, OR

Exchange reactions between triethyltin alkoxides with pentafluorophenylgermanium²⁰³ and -tin²⁰² bromides have been described:

$$(c_{6}F_{5})_{4-n}GeBr_{n} + nEt_{3}SnOMe \xrightarrow{100^{0}} (c_{6}F_{5})_{4-n}Ge(OMe)_{n} + nEt_{3}SnBr_{n}$$

n = 1, 2

291

 $(C_6F_5)_3SnBr + Et_3SnOR \xrightarrow{100^{\circ}} (C_6F_5)_3SnOR + Et_3SnBr$ R = Me, Et

Triorganotin alkoxides react with polyhalomethylmethanes under free-radical conditions giving the corresponding carbonyl compounds. Two secondary reactions also occur giving an alcohol and perhalo derivatives of pentane. The mechanism of the reaction proceeds by the abstraction of a hydrogen atom on the α -carbon atom of the alkoxy group followed by the rapid elimination of a trialkyltin radical:

 $> CHOSn \leftarrow + \cdot CCl_3 \longrightarrow > COSn \leftarrow + HCCl_3$

 $>\dot{c}-0\dot{s}n \leftarrow \rightarrow > c=0 + \cdot \dot{s}n \leftarrow$

 \rightarrow Sn• + BrCCl₃ \longrightarrow \rightarrow SnBr + •CCl₃

The formation of alcohol and perhalo derivatives of pentane occurs by attack of a \cdot CCl₃ radical either on the tin atom with subsequent elimination of a RO- radical or abstraction of a hydrogen atom on the β -carbon atom of the tributyltin group leading to an olefin which adds a polyhalomethane molecule:¹²⁵

292

Dibutyltin dimethoxide and dibutyltin bis(acetylacetonate) disproportionate in hexane forming the dimer LXXX:⁶⁸

Dibutyltin dialkoxides also disproportionate with dibutyltin dihydride at low temperatures forming mixed dibutyltin hydride alkoxides, but at higher temperatures elimination of alcohol occurs:^{68,126}

$$Bu_2^{SnH}_2 + Bu_2^{Sn(OR)}_2 \xrightarrow{\langle 25^{\circ} \rangle} 2Bu_2^{SnH(OR)}$$

R = Me, Et
$$nBu_2^{SnH(OMe)} \xrightarrow{60-70^{\circ}} nMeOH + (Bu_2^{Sn})$$

The attempted addition of $Bu_2Sn(H)OMe$ to allyl alcohol resulted only in the decomposition to methanol and $(Bu_2Sn)_n$. $Bu_2Sn(H)Oallyl can, however,$ be obtained by exchange at low temperature, but mild heating results in cyclisation accompanied by elimination:

293

Dibutyltin hydride chloride adds to allyl and propargyl acetates forming

Attempted reduction of LXXXI to $\text{Bu}_2(\text{H})\text{Sn(CH}_2)_3\text{OH}$ by LiAlH_4 yielded an ether phase which evolved hydrogen gas even at 0⁰ as cyclisation takes place:

Cyclostannaoxapentanes and -pentenes may be formed directly by the reaction of Bu_2SnH_2 with allyl or propargyl alcohols:¹²⁶

Mehrotra has investigated the products of reaction of butyltin tris(isopropoxide) with alkanolamines¹²⁷ and β -diketones¹²⁸. Various products are obtained depending on the molar ratio of the reactants, viz.:

The same products could, in general, also be obtained using butylstannonic acid. Higher reaction temperatures caused condensation of N-H bonds:

-Diketones and 8-hydroxyquinoline also afford derivatives of the types

296

Mehrotra¹²⁹⁻¹³¹ and Gupta¹³² have investigated the chemistry of compounds containing the Sn-O-B linkage. Several synthetic methods were employed:

$$2B(0H)_3 + 3(R_3 sn)_2 0 \longrightarrow 2(R_3 sno)_3 B + 3H_2 0$$
 (ref. 129)

$$B_{2}O_{3} + (R_{3}Sn)_{2}O \longrightarrow (R_{3}Sn0BO)_{3} \xrightarrow{\text{in vacuo; } -B_{2}O_{3}, \\ +B_{2}O_{3}; 120-240^{\circ}} (R_{3}Sn0)_{3}B$$
(ref. 129)

$$2Bu_2SnO + 2H_3BO_3 + 2diol \longrightarrow QOSnBu_2OSnBu_2OQ$$
 (ref. 130)
 $Q = -B \bigcirc 0 \longrightarrow , -B \bigcirc 0 \longrightarrow 0$

These types of compound undergo reaction with a variety of reagents at the Sn-O bond:

<u>O</u>-Triorganostannylamidoximes LXXXV 133 and diorganotin derivatives of 2-thenoyltrifluoroacetone LXXXVI 134 have also been synthesised by similar methods.

LXXXV

Organotin alkoxide and acetylacetonate derivatives have been obtained by oxidative-addition reactions of tin(II) bis(alkoxides), bis(β -ketoenolates) and bis(β -ketoesters):^{226,227,230}

 $Sn(acac)_2 + RX \longrightarrow RSn(acac)_2X$ RX = MeI, BrCH₂CH=CH₂, PhCH₂Br 299

$$Sn(OR)_2$$
 + R'I \longrightarrow R'Sn(OR)₂I
= MeC=CHCO₂Et, PhC=CHCOPh, O-C₆H₄CO₂Et
R' = Me, Et, Bu

R

Serpone and his coworkers have investigated the mechanism of intermolecular ligand exchange and configurational rearrangements in organotin acetylacetonates. Acetylacetonate exchange between Ph_Sn(acac), and Me_Sn(acac), is first-order in Ph_Sn(acac), but zero-order in Me_Sn(acac) concentration. A mechanism was proposed in which the rate-determining step is tin-oxygen bond rupture in Ph_Sn(acac), to yield a five-coordinate tin species with a 'dangling' unidentate acetylacetonate ligand. This species is then thought to react with a similar five-coordinate species formed from a rapid equilibrium step from Me_Sn(acac), 135. Configurational rearrangements in RClSn(acac), (R = Me, Ph) complexes probably proceed via twist motions through trigonal-prismatic transition states, if the exchange process occurs by a sole reaction pathway¹³⁶. In CDCl₂ and CHBr₂ solutions these compounds have predominantly the cis structures with only a small amount of the trans isomer. When R = Ph, the complex is <u>ca</u>. 95% cis and ca. 5% trans. Kinetics of configurational rearrangements which exchange acac ring protons between the two non-equivalent sites in $ClRSn(acac)_{2}$ (R = Me, Ph), along with exchange of methyl groups in Ph₂Sn(acac)₂ have also been studied. Substitution of chloride in Cl_Sn(acac), by phenyl or methyl groups increase the lability in the order Cl_Sn< PhClSn < MeClSn< Ph_Sn¹³⁷.

Ruddick and Sams¹³⁸ have investigated the structures of organotin Oxine and related derivatives by magnetically-perturbed Mössbauer spectroscopy.

 $\mathrm{RSnCl}(\mathrm{ox})_2$ (R = Bu, Ph) compounds have the <u>cis</u>-RSnXY₄ octahedral structure, whilst BuSn(ox)₃ is seven-coordinate with three equivalent bidentate oxine groups. The complexes R₂SnCl(ox) (R = Me, Ph) and the dimethyltin derivatives of <u>N</u>-(2-hydroxyphenyl)salicylaldimine, Me₂Sn(sal-<u>N</u>-20C₆H₄), have five-coordinate structures. The data for Me₃SnO₂CMe and Ph₃Sn(ox) are consistent with the previously deduced <u>trans</u> and <u>cis</u>-R₃SnXY five-coordinate stereochemistries, but the complex Ph₃Sn(sal-<u>N</u>-2-HOC₆H₄) appears to possess the novel <u>mer</u>-octahedral configuration. Nmr and uv data indicate that coordinating solvents such as pyridine, trimethylphosphate, DMSO, or HMPA do not interact with the substituted dimethyltin bis(oxinates) Me₂Sn(ox-Y)₂ (Y = Me, Et)¹⁵⁹. Full details of the crystal structure of Ph₃SnONPh.CO.Ph have been published¹⁴⁰. The tin atoms are five-coordinated with a distorted <u>cis</u>-Ph₃SnX₂ configuration (Fig. 6). The value of the Mössbauer quadrupole splitting is satisfactorily explained using the point charge approximation.

Several organotin derivatives of tri- and tetradentate Schiff bases have been investigated. The diphenyltin derivative of 2-(<u>o</u>-hydroxyphenyl)-

Fig. 8. The molecular structure of Ph₅Sn0.NPh.CO.Ph. (Reproduced by permission of the Chemical Society).

benzothiazoline, Ph_2SnSAT , has heavily distorted trigonal-bipyramidal geometry. The nitrogen atom and the two phenyl groups occupy equatorial positions, with the sulphur and oxygen atoms occupying the axial sites. (Sn-S = 2.496(1)Å; Sn-O = 2.093(2)Å; Sn-N = 2.217(3)Å; Sn-C = 2.123(3)Å) $(Fig. 9)^{141}$. The structure of the dimethyltin derivative of 2-hydroxy-<u>N</u>-(2hydroxybenzylidene)aniline, Me₂SnSAB, is similar, although weak intermolecular Sn...O coordination (Sn...O = 2.881(8)Å) occurs to form rather loose dimers (Fig. 10). Each individual molecule, however, also possesses the distorted trigonal bipyramidal stereochemistry, again with the nitrogen and both carbon atoms occupying equatorial sites and the oxygen atoms the axial sites $(Sn-C = 2.117(14)Å; Sn-O = 2.112(9)Å; Sn-N = 2.229(11)Å)^{142}$. Organochlorotin derivatives of similar ONO and SNO Schiff bases, RCISn(trid), have also been synthesised and investigated spectroscopically. The data indicate polymeric

Fig. 9. The molecular structure of Ph₂SnSAT. (Reproduced with permission from Z anorg. allg. Chem.).
Fig. 10. The molecular structure of Me₂SnSAB. (Reproduced with permission from Z. anorg. allg. Chem.).

trigonal bipyramidal structures, although five-coordinated monomers and octahedral dimers cannot be ruled out¹⁴³. Diorganotin derivatives of ONNO tetradentae Schiff bases derived from salicylaldehyde and its derivatives and ethylene-, propylene-, or phenylene diamine have been synthesised. The representative compound, dimethyltin bis(salicylaldehyde)ethylenediiminate) Me₂SnBSED, may be isolated in two isomeric forms in the solid state. Spectroscopic data show that these have six-coordinate <u>cis</u> and <u>trans</u> geometries with, respectively, a bent CSnC molety and a non-planar BSED ligand and nearly linear CSnC molety and a symmetric BSED ligand. The two forms undergo <u>cis-trans</u> isomerisation in solution, the <u>cis</u> isomer being favoured in non-coordinating solvents (CH₂Cl₂) and PhNO₂) and the <u>trans</u> form by coordinating solvents (DMF and HMPA). The <u>trans</u> isomer is also favoured at higher temperatures. In air, the complex is converted to, initially, (Me₂Sn)₂O(BSED), for which structure LXXXVII is proposed, and ultimately to the ligand and dimethyltin oxide¹⁴⁴.

Mössbauer data for the diphenyltin and phenylchlorotin derivatives of the tetradentate ligand diacetylbis(benzoylhydrazone) indicate octahedral geometries for both, with linear CSnC and CSnCl skeletons, respectively¹⁴⁵

7. CARBOXYLATES AND OXYACID DERIVATIVES.

 Me_3SnO_2CMe and $Me_3SnO_2CCF_3$ are isostructural, consisting of chains of carboxylate-bridged planar Me_3Sn groups (Fig. 11). The carboxyl bridging

References p. 346

Fig. 11. The repeat unit of the polymeric chain of Me₃SnO₂CCF₃. (Reproduced with permission from J. Cryst. Mol. Struct.).

303

is not equal; the tin-oxygen bond distances being 2.205(3) and 2.391(4)Å for the acetate and 2.177(14) and 2.458(15)Å for the trifluoracetate¹⁴⁶. Osmometric and infra-red data for trivinyltin formate in carbon tetrachloride solution suggest the presence of a monomer \Rightarrow dimer equilibrium¹⁴⁷. Garner and Hughes have shown that divinyltin bis(trifluoroacetate) is monomeric with unidentate trifluoroacetate groups¹⁴⁹. The patent literature reports the synthesis of dialkyltin maleates from maleic anhydride and R₂SnO in an organic solvent¹⁵⁰, the compounds LXXXVIIIa and LXXXVIIIb from R₃SnOH or (R₃Sn)₂O and the corresponding carboxylic acid¹⁵¹, and R₃SnO₂CCH=C(OR⁺)CH₂R^m

LXXXVIIb LXXXVIIa

from $R_3 SnOR^1$ and $HO_2 CCH_2 C \equiv CR^1$ at temperatures in excess of 100° ¹⁵². Mono- and bis-trialkyltin esters of the unsaturated carboxylic acids, $HO_2 CCMe=CHCO_2 H$ and $CH_2 C(CO_2 H) CH_2 CO_2 H$, may also be obtained by reaction with the triorganotin (hydr)oxide. The derivatives readily polymerize, and copolymerised with styrene and methyl methacrylate¹⁵³. Triorganotin esters of bicyclo [2,2,1] hept-2-ene-5-carboxylates may be obtained by the Diels-Alder addition of $R_3 SnO_2 CR^1=CH_2$ to cyclopentadiene at 150-250° ¹⁵⁴.

Bis(trialkyltin) oxides disproportionate in liquid sulphur dioxide at and above room temperature giving diorganotin sulphites, R_2SnSO_3 , and triorganotin monosulphinates, R_3SnO_2SR , or diorganotin disulphinates, respectively¹⁵⁵.

$$\begin{array}{rcl} R_{3}SnOSnR_{3} &+& 2SO_{2} & \xrightarrow{\text{liquid } SO_{2}} & R_{3}SnO_{2}SR &+& R_{2}SnSO_{3} \\ R &=& Me; & T &=& 6O^{\circ} \\ R &=& Et, Ph; & T &=& 25^{\circ} \\ R_{3}SnOSnR_{3} &+& 3SO_{2} & \xrightarrow{\text{liquid } SO_{2}} & R_{2}Sn(O_{2}SR)_{2} &+& R_{2}SnSO_{3} \\ R &=& Et, Ph; & T &=& 6O^{\circ} \\ \end{array}$$

 α -Thienyltriorganotin compounds react with SO₂ at -20⁰ exclusively at the tin-thienyl bond:³⁴

Triphenylmethyltin reacts with liquid SO_2 at -30° to give a mixture of mono- and di-insertion products IXC and XC:

but at temperatures of 20-60°, or using aqueous sulphur dioxide, only XC was formed. In no case was the Sn-Me bond attacked¹⁵⁶. Similar studies with perfluoroorganotin derivatives demonstrate that $(C_6F_5)_4$ Sn is inert and $(CF_2=CF)_4$ Sn shows only slight reactivity. In mixed derivatives such as $Ph_3SnC_6F_5$ and $Ph_3SnCF=CF_2$, reaction takes place only at the phenyl-tin bond:

$$\frac{Ph_{3}SnL}{L} + \frac{2SO_{2}}{liq.SO_{2}} \xrightarrow{2O-60^{\circ}} Ph(L)Sn(O_{2}SPh)_{2}$$

$$L = C_{6}F_{5}, CF=CF_{2}$$

The presence of the $C_{6}F_{5}$ group in $Me_{5}SnC_{6}F_{5}$ deactivates the molecule to attack, and the tin sulphate XCI is produced after 14 days at 90°:

$$\stackrel{\text{fe}_{3}\text{SnC}_{6}\text{F}_{5}}{\longrightarrow} \stackrel{90^{\circ}/14 \text{ days}}{\longrightarrow} (\text{Me}_{3}\text{Sn}) \text{Me}_{2}(\text{C}_{6}\text{F}_{5})\text{Sn SO}_{2}$$

$$\stackrel{\text{liquid SO}_{2}}{\longrightarrow} \text{XCI}$$

Perfluoromethanesulphinate derivatives have been obtained from the organitin halides and the sodium sulphinate:¹⁵⁷

$$R_{4-n} \operatorname{SnX}_{n} + n\operatorname{Na0}_{2}\operatorname{SCF}_{3} \xrightarrow{20^{\circ}/\operatorname{THF}} R_{4-n} \operatorname{Sn}(\operatorname{O}_{2}\operatorname{SCF}_{3})_{n} + n\operatorname{NaX}_{2}$$

R = Me, Et, Ph, $\underline{p}-C_{6}H_{4}$ Me; X = Cl, Br; n = 1, 2

Arguments favouring an S_E^2 mechanism for the SO_2 insertion reactions of tetraorganostannanes have been presented by Kunze and Koola¹⁵⁸.

References p. 346

The adducts Me₂Sn(NO₃)₂(py)₂ and Me₃SnNO₃(py) are formed by the addition of pyridine to chloroform suspension of the appropriate anhydrous methyltin nitrate. Mössbauer, infra-red, and Raman data indicate structures XCII and XCIII with unidentate nitrate groups for the two complexes.

XCII

306

XCIII

Structures XCIV involving bridging nitrate groups was proposed for anhydrous Me_SnN0_3¹⁵⁹.

Dimethyltin nitrate hydroxide is dimeric in the crystal. Each tin atom enjoys trigonal bipyramidal geometry with the methyl groups occupying equatorial sites (Sn-C = 2.13(4) Å) and the nitrate group bonding in a unidentate fashion via an axial site (Sn-O = 2.30(3) Å). Two hydroxy bridges link adjacent tin atoms via the remaining equatorial and axial sites (Sn-0 = 2.18(3) Å) (Fig. 12)¹⁶⁰.

307

Fig. 12. The structure of Me₂Sn(OH)NO₃. (Reproduced by permission of the Chemical Society).

The structure of $(Me_2Sn)_3(PO_4)_2 \cdot 8H_2O$ consists of infinite 'ribbons' through the crystal (Fig. 13). One tin atom has a regular octahedral environment with <u>trans</u> methyl groups, whilst the other two enjoy highly distorted (CSnC = 147, 150[°]) tetrahedral geometries due to weak coordination of two water molecules. All the water molecules are involved in hydrogen bonding to each other and to phosphate oxygen atoms¹⁶¹. The compounds

Fig. 13. The structure of $(Me_2Sn)_3(PO_4)_2 \cdot 8H_2O$. (Reproduced by permission of the Chemical Society).

 $Me_3Sn0_2PCl_2$ and $Me_2Sn(0_2PCl_2)_2$ have been synthesised from the appropriate methyltin chloride and $P_20_3Cl_4$. Ir and Mössbauer data suggest that the compounds are associated through OPO bridges¹⁶². Dibutyltin butoxide diethylphosphate has been prepared from diethylphosphate and $Bu_2Sn(0Bu)_2^{-163}$. Polymeric dibutyltin arsonates, Bu_2Sn0_3AsAr , have been obtained from Bu_2Sn0_3 and the arsonic acid¹⁶⁴.

The crystal structure of polymeric tris(trimethyltin) chromate hydroxide has been determined. Each of three crystallographically independent tin atoms has approximately trigonal bipyramidal geometry with approximately planar Me₃Sn groups. The oxygen atoms of the chromate groups are bonded to tin, and the hydroxide group bridges two Me₃Sn groups, and is also probably hydrogen-bonded to one of the chromate oxygen atoms. The Sn-O_{chromate} bond distances are longer (2.48(5))Å and 2.51(4)Å) than the Sn-OH bond distances (2.14(3))Å and 2.51(4)Å) (Figs. 14a and 14b)¹⁶⁵.

Fig. 14. (a) Projection of part of the structure of basic trimethyltin chromate perpendicular to <u>Z</u>, showing the chains in the <u>Y</u> axis direction. (b) Projection of part of the structure perpendicular to <u>Y</u>, showing the chains in the <u>Z</u> axis direction. (Reproduced by permission of the Chemical Society).

8. SULPHUR DERIVATIVES.

Syntheses of organotin sulphides and thiolates are reported in various patents. Trimeric ethylhydrotin sulphide, $(EtHSnS)_3$, is formed in 56% yield by the action of sodium thiosulphate on ethyltin trichloride¹⁶⁶. Mixed vinylalkyltin sulphides¹⁶⁷, Bu₂Sn $\left[SCH_2CH_2O(CH_2)_{17}Me\right]_2^{168}$, and alkyltin (isooctyloxycarbonyl)methanethiolates¹⁶⁹ have also been synthesised by standard procedures. Heating mixtures of organotin alkoxides or oxides with thioesters affords the corresponding organotin thiolates in yields upto 95%:

$$\begin{array}{rcl} & \operatorname{R}_{n}\operatorname{Sn}(\operatorname{OR'})_{4-n} & + & \operatorname{MeCOSR''} & \longrightarrow & \operatorname{R}_{n}\operatorname{Sn}(\operatorname{SR''})_{4-n} & + & \operatorname{MeCO}_{2}\operatorname{R} \\ & \operatorname{R}_{n}\operatorname{SnO}_{\frac{1}{2}}(4-n) & + & \operatorname{MeCOSR''} & \longrightarrow & \operatorname{R}_{n}\operatorname{Sn}(\operatorname{SR''})_{4-n} & + & \operatorname{R}_{n}\operatorname{Sn}(\operatorname{O}_{2}\operatorname{CMe})_{4-n} \\ & \operatorname{R}, \operatorname{R'} = & \operatorname{alkyl}; & \operatorname{R''} = & \operatorname{alkyl}, & \operatorname{aryl}, & \operatorname{alkenyl} \end{array}$$

Triethyltin thioacetate reacts similarly with triethyltin methoxide: 170

 $Et_3SnSCOMe + Et_3SnOMe \longrightarrow Et_3SnSSnEt_3 + MeCO_2Me$

Stapfer and Herber have investigated the synthesis and structures of organotin mercaptoesters, $R_n Sn \left[S(CH_2)_{1-2}CO_2R'\right]_{4-n}^{171}$. The compounds were prepared by the condensation of the organotin chloride and thiocompound with or without an HCl acceptor such as sodium bicarbonate or triethylamine. The trialkyltin mercaptoesters $Bu_5 SnSCH_2 CO_2 R$ (R = Me, C_8H_{17} , Na) all appear to be isostructural with four-coordinated tin atoms. The structures of the dialkyltin bis(mercaptoesters), however, depend on the nature and size of the ligands and also on the method of preparation. Generally, the two mercaptoester groups are not equivalent; one functioning as a unidentate

and the other as a bidentate ligand through intramolecular carbonyl \rightarrow tin coordination. Butyltin tris(isooctylthioglycolate) has five-coordinate tin when prepared in an aqueous medium, but six-coordinated tin when obtained under non-aqueous conditions. Again both unidentate and bidentate mercaptoester groups are present.

Treatment of dibutyltin bis(thiobenzoate) with dilute aqueous hydrochloric acid results in the cleavage of one thiobenzoate group from tin forming XCV:¹⁷²

 $Bu_2SnO + 2PhCOSH \longrightarrow Bu_2Sn(SCOPh)_2 \xrightarrow{HC1} Bu_2SnC1(SCOPh)$ 93% XCV

Razuvaev¹⁷³ has investigated the inluence of freshly precipitated copper on the reaction of organotin sulphides. With bis(triphenyltin) sulphide, Ph₅Sn• radicals are generated which dimerize in an atmosphere of inert gas. In carbon tetrachloride, chlorine abstraction takes place:

In the presence of freshly precipitated copper, hexachloroethane reacts more vigourously with bis(trialkyltin) sulphides than CCI₄. A heterolytic process was proposed:

In the absence of copper, the reaction did not proceed, even after prolonged heating. Hexaorganodistannanes also react with C_2Cl_6 with the formation of R_3SnCl_6 Bu_SnSSnBu_3 and di-tert-butylperoxide (300% excess) at 65° in the presence of copper gave copper sulphide and Bu_Sn0^tBu as the major products:

$$(Bu_3Sn)_2S + {}^{t}Bu00{}^{t}Bu \longrightarrow CuS + Bu_3Sn0{}^{t}Bu + (Bu_3Sn)_2 + acetone$$

50% 50% 10%

No reaction was observed between $R_5 SnSSnR_5$ (R = Et, Bu) and triphenylphosphine, but $Bu_3 SnSSnBu_3$ and Ph_3PCl_2 underwent exchange:

$$Bu_3SnSSnBu_3 + Ph_3PCl_2 \longrightarrow 2Bu_3SnCl + Ph_3PS$$

90% 80%

Tributyltin <u>p</u>-tolylsulphide reacts with triphenylmethylchloride and phenylmercuric chloride to form triphenylmethyl <u>p</u>-tolylsulphide and phenylmecury <u>p</u>-tolylsulphide¹⁷⁴. Kravtsov <u>et al.</u>^{175,176} have studied the kinetics of metal-proton exchange and metal-metal exchange between triphenyltin arylmercaptides and the corresponding phenylmercury, triphenyllead arylmercaptides or the free (substituted) thiophenol. In chlorobenzene, metal-metal exchange proceeds at a greater rate than metal-proton exchange, whilst pyridine accelerates the metal-proton exchange to a greater extent than the metal-

metal exchange. The most probable mechanism for the exchange reactions involves an associative pathway, the rate of exchange being mainly determined by the ability of the migrating group to form a cyclic transition state with delocalised bonds. The rates of cleavage of triorganotin thiophenolates have been measured in neutral and acidic aqueous dioxan. The driving force for the Sn-S bond cleavage was suggested to be a stretching of the bond by nucleophilic assistance of water. The fast reverse reaction $(k_2 \gg k_2)$ between thiol and R_2 SnOH, which instantly gives R_2 SnSPh, stabilizes the intermediate with respect to the final products and accounts for the stability of the R_2 SnSPh derivatives in neutral aqueous dioxan. For the acid hydrolysis, the mechanism which best accommodates the data involves a rate-determining attack (k₂) of a proton on the sulphur atom:¹⁷⁷

Potentiometric, spectrophotometric, and polarographic studies indicate that the dissolution of ethyltin sesquisulphide in aqueous solution, in the presence of sulphide ion at pH values between 8 and 11, is due to the formation of the two_complexes $[EtSnS_3]^{3-}$ and $[(EtSn)_3(OH)_6(HS)_8]^{5-178}$. Bis(tributylstannyl)ethane dithiolate reacts with CS₂ and methyl or phenyl isothiocyanates over
a period of several days at 40-90° to afford 2-thio- and 2-methylimino- or 2-phenylimino-1,3-dithiolanes, respectively:¹¹⁹

313

Ishii <u>et al</u>. have synthesised di- and triphenyltin esters of dithiocarboxylic acids from the phenyltin chloride and the piperidinium dithiocarboxylate. The products are crystalline, and are unreactive towards methanol, but with primary or secondary amines, however, the organotin sulphide, thioamides, and amine salts, or their decomposition products (thioamide and hydrogen sulphide) were produced:

Treatment of Ph₃SnS₂CC₆H₄Me with phenacylidene-tetramethylene sulphurane afforded XCVI:

 $CHCOPh + Ph_3SnS_2CC_6H_4Me \longrightarrow Ph_3SnSSnPh_3 + MeC_6H_4CS_2CH_2COPh$

unidentified yellow
 crystals

Sodium methoxide displaced the thiobenzoate group: 179

 $Ph_3SnS_2CC_6H_4Me + Na^+ OMe \longrightarrow Ph_3SnOMe + Na^+ S_2CC_6H_4Me$

Diphenyltin bis $(\underline{N},\underline{N}'$ -diethyldithiocarbamate) possesses a distorted <u>cis</u> octahedral geometry (Fig. 15). The angle subtended at the tin atom by

Fig. 15. The molecular structure of $Fh_2Sn(S_2CNEt_2)_2$. (Reproduced with permission from J. Mol. Cryst. Struct.).

the groups is $101.4(6)^{\circ}$, with the two Sn-C bond distances equal (2.176(17)). The Sn-S bond distances of one ligand are approximately equal (2.613(5)) and 2.637(5), but differ significantly in the other (2.548(5)) and 2.790(6).

Tetramethyltin undergoes Sn-C bond cleavage with HSP(S)FEt giving monomeric Me₃SnSP(S)FEt for which nmr data suggest the five-coordinate structure XCVII¹⁸¹.

Petridis and Fitzsimmons have synthesised anionic diorganotin and triorganotin complexes of the sulphur ligands $(CN)_2 C_2 S_2^{2-}$ (MNT) and $CN(CO_2Et)C_2 S_2^{-}$ (CED), $[R_2 Sn(NNT)_2]^{2-}$, $[R_2 Sn(CED)_2]^{2-}$ and $[R_3 Sn(NNT)_2]^{-}$ (R = Me, Bu, Ph). From Mössbauer data, it was deduced that the $[R_2 Sn(MNT)_2]^{2-}$ (R = Me, Bu, Ph) and $[Bu_2 Sn(CED)_2]^{2-}$ complexes possess distorted octahedral structures with chelating ligands and CSnC bond angles of <u>ca</u>. 130°. The $[Ph_2 Sn(MNT)_2]^{2-}$ anions, however, appear to have four-coordinate tin atoms¹⁸². A similar Mössbauer study of organotin-MNT complexes has also been carried out by Allen and Brown¹⁸³. The neutral species $R_2 SnMNT$ (R = Me, Ph) are polymeric. The MNT ligand is unidentate in $R_2 Sn(MNT)X]^-$ (R = Me; X = Cl, Br, I: R = Ph; X = Cl) anions. A <u>cis</u> octahedral structure was also assigned to the $[R_2 Sn(MNT)_2]^{2-}$ (R = Me, Ph) anions, in agreement with the observations of Petridis and Fitzsimmons.

9. NITROGEN AND PHOSFORUS DERIVATIVES.

Solvolysis of ^tBu₃SnPh in liquid ammonia in the presence of KNH₂ affords the primary stannylamine XCVII as a moisture-sensitive liquid:

317

^tBu₃SnND₂ is similarly produced using KND₂ in ND₃. Both compounds form bis(tri-<u>tert</u>-butyltin) carbonate on reaction with wet carbon dioxide, but unlike other stannylamines, the Sn-N bond in XCVII is not cleaved by carbon tetrachloride¹⁸⁴. Di-<u>tert</u>-butylstannylbis(dimethylamine) reacts with an excess of methyl- or benzylamine to give the stannylamines XCVIII, which themselves condense at 100-130⁰ with loss of alkylamine to form the 1,3,2,4diazadistannetidines IC as colourless crystals:

Reaction of IC with benzonitrile produces the eight-membered heterocycle C, but with sulphur-containing heterocumulenes such as CS₂ or phenyl isothiocyanate, the cyclic dithiadistannane CI is formed:¹⁸⁵

2R'=C=N-Me R = S, PhN

The phosphonitrilic-substitued tristannazane CII has been obtained by the following route: 186

Methanesulphonobis(methylimide)methylamidostannanes of the general composition $Me_n Sn \left[NMeSMe(NMe)_2\right]_{4-n}$ (n = 0-3) CIII have been synthesised by transamination of the corresponding stannylamines with MeS(NMe)_NHMe:

$$\frac{Me_{n}Sn(NMe_{2})_{4-n} + (4-n)MeS(NMe)_{2}NHMe}{\longrightarrow} \frac{Me_{n}Sn[NMeSMe(NMe)_{2}]_{4-n}}{CIII}$$

The same compounds can also be synthesised by substitution using MeS(NMe)2^{NMeNa⁺}. Proton nmr spectra indicate the occurrence of intramolecular exchange processes in solution such as:¹⁸⁷

319

(n = 1-4)

CIV

The trimethyltin derivative of 7,7,8,8-tetracyanoquinodimethane, Me₃SnTCNQ, has been obtained from Me₃SnCl and Li⁺(TCNQ)⁻ in water as an intense blue, air-stable solid with five-coordinated tin atoms¹⁸⁸. The preparation of trialkyltin triazole derivatives from R₃SnOSnR₃ (R = C₆H₁₁, Bu, ⁱPr, ^tBu, C₅H₉) and 1,2,4-triazole has been reported in a patent¹⁸⁹.

The crystal structure of $Me_3 Sn MeNO_2$ consists of planar $Me_3 Sn$ groups linked by planar <u>M</u>-nitromethylamine groups (Fig. 16) $(Sn-C \approx 2.16(7))^2$ Sn-N $\approx 2.33(4)^3$, Sn-O = $2.36(5)^3$)¹⁹⁰.

Fig. 16. The repeat unit of the chains of Me3SnNMeNO2.

Tris(trimethylstannyl)amine reacts with the methylchlorosilanes $Me_{4-n}SiCl_n$ (n = 1-4) to afford mixed stannylsilylamines CIV: $(Me_3Sn)_3N + Me_{4-n}SiCl_n \longrightarrow (Me_3Sn)_2NSiMe_{4-n}Cl_{n-1}$ The complexes CIV (n = 2, 3) react with AgNCO and AgNCS to give the corresponding pseudohalide derivatives. With S_4N_4 , $(Me_3Sn)_3N$ gives the distannyl-sulphodilimide, $Me_3SnNSNSnMe_3$, which is also produced, together with $Me_3SnNSNSiMe_3$, from the reaction of CIV (n = 1) with S_4N_4 :

 $2(Me_3Sn)_2NSIMe_3 + S_4N_4 \longrightarrow Me_3SnNSNSnMe_3 + S + 2Me_3SnNSNSIMe_3$

(Me_Sn) NSiMe NCS also reacts with SANA: 191

320

 $2(\text{Me}_3\text{Sn})_2\text{NSiMe}_2\text{NCS} + \text{S}_4\text{N}_4 \longrightarrow \text{Me}_4\text{Sn} + \text{Me}_2\text{SnN}_2\text{S}_2 + 2\text{Me}_3\text{SnNSNSiMe}_2\text{NCS}$

2Me3SnNCS + Me2Si

Lehnig³⁰³ has studied the mechanism of the photochemical decomposition of Me₃SnNEt₂ using CIDNP. The following reaction scheme was proposed:

giving the overall reaction:

$$2Me_3SnNEt_2 \xrightarrow{hv} Me_3SnSnMe_3 + Et_2NH + MeCH=NEt$$

321

The addition of excess <u>tert</u>-butyl chloride to the system greatly suppresses the formation of $Me_3SnSnMe_3$, and instead Me_3SnCl is formed.

The expected insertion products CV are obtained from the reaction of triorganotin cyanamides with isocyanates:¹⁹²

Ishii has described the reactions of benzoyl-<u>tert</u>-butylcarbodiimide with Me_3SnNme_2 and $(Me_3Sn)_2NMe^{193}$. 1:1 Adducts are obtained from an exothermic reaction at room temperature:

Spectroscopic and molecular weight data suggest the intramolecularly coordinated structures CVII and CVIII for the two compounds, although proton nmr spectra indicate that Me₃Sn group exchange occurs with CVIII at $\geq 50^{\circ}$ ¹⁹³.

10. TIN-MAIN GROUP METAL BONDED DERIVATIVES.

Weibel and Oliver have shown that in solutions of LiSnMe₃ and KSnMe₃ an equilibrium exists between contact and solvent-separated ion pairs of these species. HMPA strongly solvates the alkali metal ion, and shifts the equilibrium:

strongly to the right. Decreasing solvating ability is shown by DME and bis(β -ethoxyethyl)ether, until with THF the equilibrium is strongly displaced to the left. The addition of two moles of EMPA to a THF solution of LiSnMe₃ causes a displacement of the equilibrium to the right. A lowering in temperature also results in a shift to the right. No attack of the solvent by Me₃SnLi was observed, but on heating the compound rearranges to Me₄Sn and LiSn(SnMe₃)₃, a process which is aided by added EMPA¹⁹⁵. The same authors have reported proton nmr data for the species Li [Me₃SnMe₃] (M = Al, Ga, In, Tl) and Li [(Me₃Sn)_nTIMe_{4-n}]. The presence of tin-metal bonds in these complexes was confirmed by the observation of tin-across-metal coupling, and for the thallium derivatives by the additional observation of thallium-across-tin coupling²⁰¹. Vyanzankin <u>et al</u>.¹⁹⁶ have investigated the reactions of tris-(trimethylsilylmethyl)stannyllithium with peroxy compounds. Lithium and tris(trimethylsilyl)stannyl <u>tert</u>-butoxides or benzoates were obtained:

323

Thermally-stable stannylmercury and stannylcadmium compounds have been obtained by hydrostannolysis: 197,198

$$2(\text{Me}_{3}\text{SiCH}_{2})_{3}\text{SnH} + \text{Et}_{2}\text{Cd} \xrightarrow{-2C_{2}\text{H}_{6}} \left[(\text{Me}_{3}\text{SiCH}_{2})_{3}\text{Sn}\right]_{2}\text{Cd}$$

$$CX$$

$$2(\operatorname{Me}_{3}\operatorname{CCH}_{2})_{3}\operatorname{SnH} + \operatorname{Et}_{2}\operatorname{M} \xrightarrow{-2\operatorname{C}_{2}\operatorname{H}_{6}} \left[(\operatorname{Me}_{3}\operatorname{CCH}_{2})_{3}\operatorname{Sn} \right]_{2}\operatorname{M}$$
$$\operatorname{M} = \operatorname{Cd}, \operatorname{Hg}$$

The derivatives CX and CXI are very reactive. CX is readily oxidised by molecular oxygen in hexane solution to the stannyloxycadmium compound CXII, and with benzoyl peroxide to give the organotin and cadmium benzoates.

Both CX and CXI are oxidised by iodine and mercury(II) compounds:

When the reaction of CXI ($M = H_g$) with iodine in a 1:1 molar ratio is carried out at temperatures of $-10 - -60^{\circ}$ in hexane, mercury (97%) and triorganotin iodide (81%) are produced:

Mitchell has synthesised stannylmercury compounds of the type RHgSnR⁴₅ by the exchange of triorganotin methoxide with the corresponding silylmercurials:

 $R' = Et; R = Et, Pr, Bu, {}^{t}Bu$ $R = {}^{t}Bu; R' = Bu, {}^{i}Bu, Me$

When R = R' = Me or R = Et, R' = Me, the desired product CXIII is unstable, and mercury and Me_4Sn or Me_5EtSn are produced. The observation of CIDNP signals in the nmr during thermolysis for the ^tBuHgSnR¹₅ compounds indicates homolytic cleavage of the C-Hg bond. Photolysis of CXIII also involves free-radical intermediates¹⁹⁹. The reaction between ^tBuHgSnR₃ and benzylidenemalononitrile leads to the formation of <u>N</u>-trialkylstannylketeneimines CXIV:

The same compounds may also be obtained from the corresponding silylketeneimine and triorganotin alkoxide or from triorganotin hydride and the adduct between benzylidedmalononitrile and ^tBu₂Hg²⁰⁰. Irradiation of toluene solutions of $(C_6F_5)_3$ SnBr and bis(triethylgermyl)mercury or Et₃GeHgGe(C_6F_5)₃ leads to the formation of bis(tripentafluorophenylstannyl)mercury CXV and the mixed stannylgermylmercurial CXVI:

326

$$2(C_{6}F_{5})_{3}SnBr + (Et_{3}Ge)_{2}Hg \xrightarrow{hv} 2Et_{3}GeBr + \left[(C_{6}F_{5})_{3}Sn\right]_{2}H_{\ell}$$

$$CXV$$

$$(c_{6}F_{5})_{3}$$
SnBr + Et₃GeHgGe $(c_{6}F_{5})_{3}$ \xrightarrow{hv} Et₃GeBr +
 $(c_{6}F_{5})_{3}$ SnHgGe $(c_{6}F_{5})_{3}$
CXVI

Without arradiation, mercury and the ditin compound are formed:

$$2(C_6F_5)_3$$
SnBr + $(Et_3Ge)_2$ Hg $\xrightarrow{20^\circ}$ $2Et_3GeBr$ + Hg + $(C_6F_5)_6$ Sn₂

CXV shows the usual reactions of this type of compound, eg:

The tripentafluorophenyltin alkoxides $({}^{C}_{6}{}^{F}_{5})_{3}$ SnOR, formed by exchange condense with triethyltin hydride to give the mixed distannane CXVI, which itself exchanges with $({}^{C}_{6}{}^{F}_{5})_{3}$ SnBr forming the symmetrical distannane CXVII:

Hexaethyldistannanereacts much more slowly with (C₆F₅)₃SnBr producing Et₃SnBr, CXVI and CXVII:²⁰²

$$Et_{6}Sn_{2} + (c_{6}F_{5})_{3}Br \xrightarrow{100^{\circ}} Et_{3}SnBr + Et_{3}SnSn(c_{6}F_{5})_{3} \\ \downarrow (c_{6}F_{5})_{3}SnBr \\ \downarrow (c_{6}F_{5})_{3}SnBr \\ Et_{3}SnBr + (c_{6}F_{5})_{6}Sn_{2}$$

Germanium-tin bonded derivatives may also be obtained by hydrostannolysis:

$$(c_{6}F_{5})_{3}GeH + Et_{3}SnNEt_{2} \xrightarrow{100^{\circ}} (c_{6}F_{5})_{3}GeSnEt_{3} + Et_{2}NH$$
$$(c_{6}F_{5})_{2}GeH_{2} + 2Et_{3}SnNEt_{2} \xrightarrow{100^{\circ}} Et_{3}SnGe(c_{6}F_{5})_{2}SnEt_{3} + 2Et_{2}NH$$

Triphenylstannyl and tributylstannyl radicals generated photochemically from the corresponding hexaorganodistannanes abstract halogen atoms from alkyl halides. The fate of the resulting alkyl radicals depends largely on the nature and concentration of the hydrogen atom donors present in the system²⁰⁴. Mixtures of symmetrical hexaorganodistannanes rapidly equilibriate in HMPT to afford the mixed distannanes CXVIII as distillable oils:

$$R_3SnSnR_3 + R_3SnSnR_3 \longrightarrow 2R_3SnSnR_3$$

 $R = Me; R' = Et, Pr, Bu, ^iBu$

With the Me₆Sn₂/Me₆Pb₂ system in THF (with 5% MeMgBr as catalyst) only the decomposition of Me₆Pb₂ into Me₄Pb and lead was observed. In HMPT

and without a catalyst, however, equimolecular amounts of Me_6Sn_2 and Me_4Sn , together with Me_4Pb and lead, resulting from the decomposition of the intermediately formed stannaplumbane CXIX:

$$\begin{array}{cccc} {}^{\mathrm{Me}_{6}\mathrm{Sn}_{2}} + {}^{\mathrm{Me}_{6}\mathrm{Pb}_{2}} & \longrightarrow & \left[{}^{\mathrm{Me}_{3}\mathrm{SnPbMe}_{3}} \right] & \longrightarrow & {}^{\mathrm{Me}_{4}\mathrm{Sn}} + & \left[{}^{\mathrm{Me}_{2}\mathrm{Pb}} \right] \\ & & & \downarrow \\ & & & & \downarrow \\ & & & & Me_{4}\mathrm{Pb} + & \mathrm{Ph} \end{array}$$

Hexaalkyldistannanes react readily under polar conditions with $C \equiv C$ triple bonds and N=N double bonds. Hexamethyl- and hexaethylditin with diphenylacetylene in HMPT with 5 mole % NaOMe catalyst affords 70% of <u>trans</u>-1,2-bis(trimethylstannyl)-1,2-diphenylethylene:

A <u>trans</u>-adduct was also obtained with phenylacetylene, but only a very small amount of reaction occurred with 1-hexyne. Diphenylbutadiyne reacts with Me₆Sn₂ in either a 1:1 or 1:2 molar ratio to give CXX.

The reaction of Me₆Sn₂ with both <u>para-</u> and <u>ortho-</u>diethynylbenzene gave rather complex mixtures from which CXXI - CXXIII and CXXIV, respectively, were isolated.

The reaction of Me₃SnSnEt₃ with PhC=CPh affords all three possible adducts from both symmetrical distannanes as well as the unsymmetrical distannane. Hexamethylditin formed the addition product CXXV with diethyl azodicarboxylate:

but no reaction was observed with C=C, C=O, or C=N double bonds, and only conversion to the isocyanurate occurred with phenyl isocyanate. Mechanisms involving stannyl Grignard reagents (MeMgBr catalysis) were proposed for the disproportionation and addition reactions²⁰⁵. Hexaalkyldistannanes are oxidised by tetracyanoethylene (TCNE) and 7,7,8,8-tetracyanoquinodimethane (TCNQ) to the corresponding $R_3Sn(TCNE)$ and $R_3Sn(TCNQ)$ derivatives. With hexaphenyldistannane and TCNQ, a ($\sigma \rightarrow \pi$) charge transfer complex of composition

 $(Ph_{3}Sn)_{2}(TCNQ)$ was obtained²⁰⁶. Peloso has investigated the kinetics of the oxidation of hexaorganodistannanes by tris(1,10-phenanthroline)iron(III) perchlorate²⁰⁷ and substituted 1,10-phenanthroline, 2,2'-bipyridine, and 2,2',2"-terpyridine complexes of iron(III)²⁰⁸. In all the systems studied the tin-tin bond is cleaved with the concomitant reduction of two moles of iron(III) complex per mole of hexaorganodistannane. The reactions all obey a second-order rate law, being first-order with respect to both distannane and the iron(III) complex, and the reactivity increases in the order Ph₆Sn₂ < $Me_{3}SnSnPh_{3} < Me_{6}Sn_{2} < Bu_{6}Sn_{2}$. An outer-sphere redox mechanism involving two one-electron transfer steps was proposed, the initial electron transfer being the rate-determining step:

330

The reaction of diphenyltin dihydride with carboxylic acids, or triphenylsilane or triphenylgermane carboxylic acids, yields the 1,1,2,2tetraphenyldicarboxylatodistannane derivatives CXXVI as monomeric species:²⁰⁹

 $2Ph_{2}SnH_{2} + 2RCO_{2}H \longrightarrow Ph_{4}Sn_{2}(O_{2}CR)_{2}$ CXXVI $R = Et, Pr, {}^{i}Pr, {}^{t}Bu, CH_{2}Ph,$ SiPhz, GePhz

Tris(trimethylstannyl)stibine displaces carbon monoxide from nickel tetracarbonyl forming the complex CIX:¹⁹⁴

$$i(co)_4 + (Me_3Sn)_3Sb - CO; pentane (Me_3Sn)_3SbNi(CO)_3$$

CIX

11. <u>TIN-TRANSITION METAL BONDED DERIVATIVES.</u>

N:

The cycloheptatrienyldicarbonylmolybdenum-tin complexes $C_7 H_7 Mo(CO)_2 SnPh_n X_{3-n}$ (X = Cl, Br; n = 0-3) have been synthesised by a number of methods:

$$C_{7}H_{7}Mo(CO)_{2}Br + LiSnPh_{3} \longrightarrow C_{7}H_{7}Mo(CO)_{2}SnPh_{3} + LiBr$$

$$C_{7}H_{7}Mo(CO)_{2}SnPh_{3} + HCl \longrightarrow C_{7}H_{7}Mo(CO)_{2}SnPh_{2}Cl + C_{6}H_{6}$$

$$\downarrow 2HCl; -2C_{6}H_{6}$$

$$C_{7}H_{7}Mo(CO)_{2}SnCl_{3}$$

 $C_{7}H_{7}Mo(CO)_{2}SnCl_{3} + Ph_{2}Hg \longrightarrow C_{7}H_{7}Mo(CO)_{2}SnPhCl_{2} + PhHgCl$

The reaction of $\left[C_{7}H_{7}Mo(CO)_{3}\right]^{+}$ BF₄⁻ with NaSnPh₃ does not lead to $C_{7}H_{7}Mo(CO)_{2}SnPh_{3}$, but rather hexaphenylditin is produced:²¹⁰

 $\begin{bmatrix} c_7 H_7 M_0(CO)_3 \end{bmatrix}^+ BF_4^- + NaSnPh_3 \longrightarrow \begin{bmatrix} c_7 H_7 M_0(CO)_3 \end{bmatrix}_2 + NaBF_4 + Ph_6 Sn_2$

The reactions of Me_3SnCH_2I with $NaMo(CO)_3cp$, $NaFe(CO)_2cp$, $NaMn(CO)_5$, and $NaCo(CO)_4$ in THF do not lead to the $SnCH_2M$ derivatives. Instead, Sn-Cbond cleavage takes place, and the corresponding $Me_3Sn-M(CO)_ncp_m$ complexes

References p. 346

result²¹¹. HCl and HBr cleave organic groups from tin in trimethyltin, triphenyltin, and phenyl(pentafluorophenyl)tin-iron, -manganese, -chromium, -molybdenum, and -tungsten complexes. Reaction of the same complexes with chlorine, iodine, IC1, or CF3I resulted in tin-transition metal bond cleavage, except in the case of Sn-Mn bonded complexes with chlorine where again only Sn-C bond cleavage occurred²¹². The complex cpFe(CO)(CNMe)SnMe₃ is formed from the base-catalysed reaction of Me_SnCl with the hydride cpFe(CO)(CNMe)H. A mechanism involving a base-induced deprotonation of the hydride leading to the anion cpFe(CO)(CNMe) - was proposed²¹³. The related complexes $(RMe_{4}C_{5})Fe(CO)_{2}SnPh_{3}$ have been obtained by the reaction of the sodium salts Na (RMe4C5)Fe(CO)2 with Ph3SnCl²¹⁴. Garner and Hughes have investigated the synthetic utility of divinyltin bis(trifluoroacetate) in the formation of tin-manganese, -iron, and -cobalt bonded derivatives. The reactions with Na Mn(CO), Na₂ Fe(CO)₄, and Na Co(CO)₄, afforded the complexes $(CH_2=CH)_2 sn(o_2 ccF_3) \left[Mn(co)_5 \right], (CH_2=CH)_2 sn \left[Mn(co)_5 \right]_2, \left\{ (CH_2=CH)_2 sn \left[Fe(co)_4 \right]_2 \right\}_2$ and $(CH_2=CH)_2 Sn \left[Co(CO)_4 \right]_2$. The structure of $(CH_2=CH)_2 Sn \left[Mn(CO)_5 \right]_2$ has four-coordinated tin with the two $Mn(CO)_5$ groups in a pseudo-staggered conformation (Fig. 17)¹⁴⁹. A second complex, (CH₂=CH)₂Sn₂Fe₄(CO)₁₆, was also isolated as a biproduct from the reaction with Na₂ $Fe(CO)_{A}$. The structure CXXVII was proposed on the basis of spectrscopic data²¹⁵

Fig. 17. The molecular structure of $(CH_2=CH)_2 Sn [Mn(CO)_5]_2$. (Reproduced by permission of the Chemical Society).

333

Nesmeyanov <u>et al</u>.have studied the nucleophilic replacement of metal carbonyl groups in trphenyltin-transition metal carbonyl complexes Ph_3SnX by other carbonyl anions $Y (X \neq Y = Co(CO)_4, Mo(CO)_3 cp, Mn(CO)_5, Re(CO)_5,$ $Fe(CO)_2 cp)^{216}$. The reactivities of the phenylchlorotin-Mn(CO)_5 and -Fe(CO)_2 cp compounds, $Ph_{3-n}Cl_nSnM$ (M = Mn(CO)_5, Fe(CO)_2 cp; n = 1-3) towards C_6F_5Li depend on M and the number of phenyl groups attached to tin^{217} . Tin(II) chloride inserts into the Fe-C bond of $cpFe(CO)_2R$ (R = substituted allyl) to afford the products $cpFe(CO)_2SnCl_2R^{229}$.

In diethylether ditin compounds react rapidly with $\text{Co}_2(\text{CO})_8$ to give the tin-cobalt compounds CXXVIII as the sole product:

 $X_3 SnSnX_3 + Co_2(CO)_8 \xrightarrow{Et_2O} 2X_3 SnCo(CO)_8$ $X_3 Sn = Me_3 Sn, Et_3 Sn, Et_2 ClSn$

but in THF, Me_6Sn_2 and $Co_2(CO)_8$ give, besides CXXVIII (X = Me), substantial amounts of Me_4Sn and $Me_2Sn[Co(CO)_4]_2$:

These additional reaction products do not arise from a disproportionation of CXXVIII (X = Me). With a catalytic amount of $Co_2(CO)_8$ in THF, less

334 than 10% of CXXVIII (X = Me), Me₄Sn(90%) and a brown insoluble solid are produced from Me₆Sn₂.

$$\stackrel{e_6Sn_2}{\longrightarrow} \xrightarrow{Me_4Sn} + \left[\stackrel{Me_2Sn}{\longrightarrow} \right] \xrightarrow{\text{brown insolubly}}$$

The extent of this catalysis disproportionation decreases with the polarity of the solvent, and no reaction at all is observed in benzene or pentane. careful bromination of the brown product afforded Me_3SnBr , Me_2SnBr_2 and $MeSnBr_3$, indicating that the dimethylstannylene polymerises during the reaction to a polytin product with a branched structure. The following mechanism, involving nucleophilic attack of $Co(CO)^-$ on $Me_3SnSnMe_3$ as the rate-determining step:

 $Mn_2(CO)_{10}$ is also an effective catalyst for the disproportionation of Me_6Sn_2 , but less so than $Co_2(CO)_8^{218}$. Trimethyltin hydride reacts exothermically with $Co_2(CO)_8$ at 20° to give $Me_3SnCo(CO)_4$ in high yield. The corresponding silyland germyl complexes may also be converted to $Me_3SnCo(CO)_4$ by reaction with Me_3SnH^{219} .

The unit cell of $\left[Me_2 \operatorname{SnCo}(CO)\operatorname{cp}\right]_2$ contains two crystallographically independent, but almost geometrically identical, molecules. Each is characterised by a four-membered $\operatorname{Sn}_2\operatorname{Co}_2\left[\operatorname{SnCoSn} = 78.0(1)^\circ$; $\operatorname{CoSnCo} = 101.8(1)^\circ$; $\operatorname{Sn-Co} = 2.542(2)$ The tin atoms have slightly distorted tetrahedral geometry $\left[\operatorname{Sn-C} = 2.20(1)$ (Fig. 18)²²⁰.

335

Fig. 18. The contents of the unit cell of $\left[cp(CO)CoSnMe_2 \right]_2$ seen in projection along <u>a</u>. (Reproduced by permission of the Chemical Society).

Collman <u>et al</u>. have investigated the chemistry of some organotin complexes of tetracarbonylosmium²²¹. Bis(triorganotin)osmium tetracarbonyl derivatives CXXIX are obtained in high yield from Na₂Os(CO)₄:

The <u>trans</u> geometry for the osmium atom indicated by infra-red and Raman spectra, was confirmed for the triphenyltin compound by an X-ray diffraction study (Fig. 19). The Sn-Os bond distance is 2.71Å.

336

Fig. 19. The molecular structure of <u>trans</u>-(Ph₂Sn)₂Os(CO)₄. (Reproduced by permission of the American Chemical Society).

The same complexes may also be prepared from the dihydride $H_2Os(CO)_4$:

$$\operatorname{Na}_{2}^{Os}(co)_{4} \xrightarrow{\operatorname{H}_{3}^{PO}_{4}} \operatorname{H}_{2}^{Os}(co)_{4} \xrightarrow{\operatorname{B}} (\operatorname{BH}^{+}) \left[\operatorname{HOs}(co)_{4}\right]^{-} \xrightarrow{\operatorname{Ph}_{3}^{SnCl}} (\operatorname{Ph}_{3}^{Sn})_{2}^{Os}(co)_{4}$$

$$H_2^{0s(C0)}_4 + 2R_3^{SnE} \longrightarrow (R_3^{Sn})_2^{0s(C0)}_4 + 2EH$$

$$E = \frac{1}{2}0. \text{ OR, } NR_2$$

Treatment of the complexes CXXIX with hydrogen halides results in Sn-C bond cleavage; but chlorine causes Sn-Os bond fission:

Reaction of CXXX with HRe(CO)₅ affords CXXXI with the Re-Sn-Os-Sn-Re skeleton:

 $2HRe(CO)_{5} + CXXX \xrightarrow{Et_2^{NH}} \left[(OC)_{5}ReSnBu_{2} \right]_{2}OsOs(CO)_{4}$

Cyclic Sn_2Os_2 ring systems are produced from R_2SnCl_2 with $\text{Na}_2\text{Os}(\text{CO})_4$ and also from treatment of CXXXI with $\text{H}_2\text{Os}(\text{CO})_4$ in the presence of base:²²¹

Trimethyltin hydride displaces alkane from $PtR_2[(Ph_2P)_2CH_2]$ (R = Me, Et) at room temperature, or at 50° when R = Ph. The <u>d</u>⁶ product $PtH(SnMe_3)_3[(Ph_2P)_2CH_2]$, dissociates reversibly in solution to $Pt(SnMe_3)_2[(Ph_2P)_2CH_2]$. Reaction of the analogous lead complex with Me_3SnH gives $PtH(SnMe_3)_3[(Ph_2P)_2CH_2]$ and Ph_6Pb_2 . With $PtCl_2[(Ph_2P)_2CH_2]$

 $\begin{array}{l} \text{Me}_{3}\text{SnH yields the complex PtCl(SnMe}_{3})_{2}\left[(\text{Fh}_{2}\text{P})_{2}\text{CH}_{2}\right] \text{ which also dissociates} \\ \text{in solution to PtCl(SnMe}_{3})\left[(\text{Ph}_{2}\text{P})_{2}\text{CH}_{2}\right] \text{. Oxidative-addition of Me}_{3}\text{SnH to} \\ \text{Pt}\left[(\text{Fh}_{2}\text{P})_{2}\text{CH}_{2}\right]_{2} \text{ similarly produces Pt(SnMe}_{3})_{2}\left[(\text{Ph}_{2}\text{P})_{2}\text{CH}_{2}\right]^{301} \text{.} \end{array}$

12. DIVALENT ORGANOTIN DERIVATIVES.

Lappert, Thomas <u>et el</u>. have described the interaction of di[bis(trimethylsilyl)methyl]tin with some transition metal carbonyl and chloride complexes. The stannylene is a good nucleophile, and is able to displace CO or R_3P and cleaves the chloride bridges of the binuclear Pt^{II} complex $[(Et_3P)PtCl_2]_2^{\circ}$. The reactions are summarised in Scheme 1. The

crystal structure of the pentacarbonylchromium complex of the stannylene has been determined, and is shown in Fig. 20. The tin enjoys trigonal coordination, with the two carbon atoms and the chromium atom bound to the tin, all four atoms being coplanar (sum of the angles at tin = 360°). The Sn-C bonds are not unusual (2.18, 2.19Å), but the Sn-Cr bond distance (2.562(5)Å) is considerably shorter than in the related complex (py)^tBu₂SnCr(CO)₅ (2.654(3)Å)²²². [(Me₃Si)₂CH]₂Sn reacts with diiron

Fig. 20. The molecular structure of $\left[\left(Me_{5}Si\right)_{2}CH\right]_{2}SnCr(CO)_{5}$. (Reproduced by permission of the Chemical Society).

nonacarbonyl to give the complex CXXXI²²², but bis(cyclopentadienyl)tin compounds react to afford the cyclic dimers CXXXIIa, which undergo Sn-Fe bond cleavage in pyridine giving the monomeric species CXXXIIb:

The reaction of SnX_2 (X = C_5H_5 , MeC_5H_4) with $Cr(CO)_6$ does not proceed thermally, but photolysis of SnX_2 with $M(CO)_6$ (M = Cr, Mo, W) in THF produces the complexes $X_2SnM(CO)_5$ ^{223,224}. Complexes of $Sn(C_5H_5)_2$ and $Sn(C_5H_4Me)_2$ with Group III trihalides have also been reported briefly²²⁴. Bis(methylcyclopentsdienyl)tin forms the charge transfer complexes $(MeC_5H_4)_2Sn.nTCNE$ (n = 1, 2) with tetracyanoethylene¹⁸⁸. Dicyclopentadienyltin and bis[<u>N,N-bis(trimethylsilyl)amino]</u>tin are in equilibrium with the monocyclopentadienyltin amine CXXXIII, which is also formed from C_5H_5SnC1 and $LiN(SiMe_3)_2$:²²⁵

 $(c_5H_5)_2Sn + Sn[N(SiMe_3)_2] \longrightarrow c_5H_5SnN(SiMe_3)_2$ CXXXIII

340

C₅H₅SnCl + LiN(SiMe₃)₂

The reaction of $(C_5H_5)_2$ Sn with iodine is rather complex. C_5H_5 SnI, $(C_5H_5)_3$ SnI, and C_5H_5 SnI₃, formed by exchange and oxidative-addition, have all been identified in the reaction mixture:

Dicyclopentadienyltin also undergoes exchange with methyltin(IV) halides:

 $(C_5H_5)_2Sn + Me_2SnCl_2 \longrightarrow Me_2(C_5H_5)SnCl + C_5H_5SnCl$

The reaction of $(C_5H_5)_2$ Sn with methyl iodide in benzene at room temperature in daylight initially gives rise to a precipitate of C_5H_5 SnI, but ultimately only Me $(C_5H_5)_2$ SnI (> 90%) was present, suggesting the reaction scheme:

 $(C_{5}H_{5})_{2}Sn + 2MeSnCl_{3} \longrightarrow 2Me(C_{5}H_{5})SnCl_{2} + C_{5}H_{5}SnCl_{2}$

$$(C_{5}H_{5})_{2}Sn + MeI \longrightarrow Me(C_{5}H_{5})_{2}SnI \xrightarrow{(C_{5}H_{5})_{2}Sn} Me(C_{5}H_{5})_{3}Sn + C_{5}H_{5}SnI \xrightarrow{+} C_{5}H_{5}SnI \xrightarrow{+} Me(C_{5}H_{5})_{3}Sn \xrightarrow{+} Me(C_{5}H_{5})_{3}SnI \xrightarrow$$

 $(C_5H_5)_2$ Sn also undergoes oxidative-addition with diethylacetylene dicarboxylate to give a mixture of six- and nine-membered ring products.

$$(c_{5}H_{5})_{2}Sn + Eto_{2}c.c \equiv c.co_{2}Et \longrightarrow \begin{bmatrix} Eto_{2}C & CO_{2}Et \\ & c \equiv c \\ & (c_{5}H_{5})_{2}Sn \end{bmatrix} n$$

With benzaldehyde, addition of the Sn-C bond across the C=O bond occurs:²²⁶

$$(c_5H_5)_2$$
sn + 2PhCHO \longrightarrow $[c_5H_5-CH-O]_2$ sn

The cleavage of $(Mec_{5}H_{4})_{2}Sn$ by β -diketones affords tin(II) bis(β -keto-enolates):²²⁷

 $(MeC_5H_4)_2Sn + R.CO.CH_2.CO.R' \longrightarrow Sn(OCR:CH.CO.R')_2$

R, R' = Me,
$$CF_2$$

Pentacarbonylmanganese hydride also cleaves cyclopentadienyl groups $(C_5H_5)_2$ Sn affording the unusual tin hydride $H_2Sn_2[Mn(C0)_5]_4$, the structure of which was confirmed by an X-ray diffraction study²²⁸.

13. PHYSICAL AND SPECTROSCOPIC DATA.

In this Section are collected references to spectroscopic and physical data for compounds not previously referred to in the text.

(i) <u>Vibrational Spectra</u>:

342

Data have been obtained for the following compounds: $Sn(C_3H_5)_4$ (IR and R)²³²; $Bu_{4-n}SnX_n$ (n = 1-3; X = F, Cl, Br, I) (IR)²³³; $Me_2SnCl_2.2DMSO$ (single crystal and solution Raman study)²³⁴; 1-oxa-2stannacyclopentanes and 1-oxa-2-stannacyclopentenes (IR and R)^{235,236}; Me_3SnS_2CMe (IR and R)²³⁷; $Me_3SnC \equiv CH$ (IR)²³⁸; <u>meta-</u> and <u>para-substituted</u> $ArCH_2SnMe_3$ derivatives (IR)²³⁹; $Me_2Sn(acac)_2$ (R)²⁵⁸; divinyltin compounds²⁶⁰.

(ii) <u>Nmr Data</u>:

Reeves has used nmr to study the behaviour of the dimethyltin ion in lyotropic nematic phases²⁴⁰. Gielen has shown that methylneophylphenyltin hydride, (Methylneophylphenylstannyl)cyclopentadienyl molybdenum tin tricarbonyl, and Me₂PhSnGeMePha-Np are configurationally stable within the nmr time scale even in the presence of strong nucleophiles²⁵⁴. A theoretical interpretation of the ¹¹⁹Sn nmr chemical shifts of methyltin amines, chlorides, methylthiolates, alkoxides, and hydrides, and hexamethylditin, has been presented²⁵⁶. Other data which is available includes the following: $Me_3SnC_9H_7$ (¹H and ¹³C)²⁴¹; <u>meta</u>- and <u>para</u>-substituted phenyltrimethylstannanes (¹H and ¹³C)²⁴²; stannacycloalkanes (¹H)²⁴³; PhSnCl₃ and MeC₆H₄SnCl₃ (¹H and ¹³C)²⁴⁴; neophyltin compounds (¹³C)²⁴⁵; organotin cyclopentadienyl derivatives (¹¹⁹Sn)²⁴⁶; trifluoromethylphenyltin compounds (¹¹⁹Sn and ¹⁹F)²⁴⁷; substituted phenyl-, benzyltrimethylstannanes (¹³C)²⁴⁸; Me₃SnCH₂Ph, 4-fluoroindenyl and indenyltrimethyltin,

343

oxirane-tin derivatives $({}^{1}\text{H})^{250}$; methyltin alkane- and benzenethiolates $({}^{119}\text{Sn})^{251}$; trimethylstannylphosphines and their pentacarbonylchromium, and tungsten complexes $({}^{119}\text{Sn})^{252}$; hexaorganoditins $({}^{119}\text{Sn})^{253}$; Me₃SnS₂CMe $({}^{1}\text{H})^{237}$; Me₃SnC=CH $({}^{1}\text{H})^{238}$; exo- and endo-2-norbornyl, 1- and 2-adamantyl and 3-nortricyclotrimethylstannanes $({}^{13}\text{C})^{255}$; and organotin acetylacetonates $({}^{1}\text{H})^{263}$.

(iii) <u>Mass Spectral Data</u>.

Ionization and appearance potentials have been measured for $Me_3SnC = CH^{238}$ and Me_3SnSPh^{270} . Mass spectral data have been listed for $Bu_{4-n}SnX_n$ (n = 1-3, X = F, Cl, Br, I)²³³; stannacyclopentanes, -hexanes, and -heptanes²⁶⁸; 10,10-dimethyl- and 10,10-diethylphenoxastannin, 10,10dimethylphenothiastannin, 10,10-dimethylphenothiastannin 5,5-dioxide, 5,5-dimethyl-5,10-dihydrodibenzo [b,e]stannin, and 10,10'-<u>spiro</u>-biphenoxastannin²⁶⁹; and $Ph_{5-n}(C_6F_5)_nSnMn(CO)_5$ (n = 0-3)²⁷¹.

(iv) Mössbauer Spectra.

The three isomers of trigonal bipyramidal R₃SnL₂ derivatives have been distinguished by linear regression analysis of quadrupole splitting References p. 346 data for five-coordinate R_3SnL_2 and six-coordinate R_2SnL_4 species. Splittings fall in the ranges <u>ca</u>. 1.7-2.3 mm/sec for <u>cis-R_3SnL_2</u>, <u>ca</u>. 3.0-3.9 mm/sec for <u>equatorial-R_3SnL_2</u>, and <u>ca</u>. 3.5-4.0 mm/sec for <u>mer-R_3SnL_2^{257}</u>. Me_2Sn(acac)_2 has been subjected to a detailed temperature study in the range $4.2 \leq T \leq$ $120^{\circ}K^{258}$. Other systems which have been studied include six-coordinate complexes of the types $[R_2SnL_4][X]_2$, $R_2SnCl_2L_2$, R_3SnClL_2 (R = Me, Ph; L =oxygen donor; $X = BPh_4^-$, Clo_4^- or PF_6^-)²⁵⁹; divinyltin compounds²⁶⁰; 3-stanna-1,2-dicarba-closo-dodecaborane²⁶¹; diorganotin dihalides²⁶²; organotin acetylacetonates²⁶³; organotin dialkyldithiocarbamates²⁶⁴; triorganotin and diorganotin arylmercaptides²⁶⁵; organotin derivatives of succinimide, phthalimide and hexahydrophthalimide²⁶⁶; and tin-cobalt bonded derivatives²⁶⁷.

(v) <u>Miscellaneous Data</u>.

344

He(I) photoelectron data have been measured for $Sn(CH_2SiMe_5)_4^{272}$; Me_SnPh and Me_SnCH_Ph²⁷³; cyclopropylcarbinyltrimethyltin, allyltrimethyltin and isobutyltrimethyltin²⁷⁴; trialkylallylstannanes and benzyltrimethylstannane²⁷⁵; and Me_SnSMe²⁷⁶. ESCA core electron binding energies have been obtained for dialkyltin dihalides²⁶². The electron spin resonance spectra of organotin radicals produced by ⁶⁰Co χ -irradiation of R₄Sn (R = Me, Et, Bu), R₅SnCl (R = Me, Bu), R₆Sn₂ (R = Me, Ph) and Ph₅SnH²⁷⁷, and also of the stable tin-centred radical $[(Me_5Si)_2CH]_3Sn^{\cdot 278}$ have been measured. Analysis of esr spectral data has been used to derive the following order of Lewis acid acceptor strength $SnCl_4 > SnBr_4 > SiF_4 \gtrsim^{t}Bu_2SnCr(CO)_5 \approx SiCl_4 \gtrsim$ $GeCl_4^{279}$. United atom theory has been applied to trisubstituted radicals and anions of the type SnX₅ (X = H, Me, F, Cl)²⁶⁰.

Dipole moments have been determined for Me_3SnSPh , $Me_3SnSC_6H_4Cl-p$, $Me_3SnSSnMe_3^{281}$, Me_3SnNCO and Me_3NCS^{282} , and $Sn(C_3H_5)_4^{232}$. Dielectric data

for benzene solutions of $R_4 Sn$, $R_2 SnCl_2$ and $R_2 Sn \left[O_2 C(CH_2)_6 Me\right]_2$ are available²⁸³.

The uv spectrum of Me₃SnS₂CMe has been measured²³⁷. The heats of mixing of tetraalkyltin compounds with normal and branched alkanes have been determined²⁸⁴. Extended Hückel calculations of allyltin compounds have provided evidence for σ - π conjugation²⁸⁵.

A method for the determination of tin in organotin monomers and polymers by radioisotopic X-ray fluorescence analysis has been described²⁸⁶.

14. APPLICATIONS.

 $R_3SnOC_6H_2X_2CN$ (X = halogen) compounds are selective herbicides for clover, sugar beet and soya bean²⁸⁸. Tris(cyclohexylmethyl)tin derivatives show miticide activity and fungicide activity against bean flour mildew, apple mildew and scab^{289,290}. Bu_jSnCH₂0₂SPh shows pesticide activity and is a seed antifungal agent²⁴. The related Bu₂SnCH₂SOR compounds are acaricides, insecticides, and herbicides²⁵. $R_3 SnS(CH_2)_n COR$ (n = 1,2,6) exhibit hydrophilic biocidal activity²⁹¹. Organotin thiophencarboxylates¹⁵¹, substituted aryltin trichlorides⁹², perfluorodistannacyclohexadiene derivatives²¹, and $R_2 Sn(X-C_5H_3N-E)_2$ (E = 0, S)²⁹² show bacteriocidal and fungicidal activity. Mixed triorganotin chloride derivatives, R_R'SnCl, show wide insecticidal, herbicidal and fungicidal activity⁸⁹. Tri-2norbornyltin compounds are fungicides and miticides 293, and triorganotin triazoles are acaricides and insecticides 189. Some R3SnOC(NR)NHCN derivatives show antifungal activity¹⁹². Cyclic diorganotin dialkoxides¹²⁰ and diacetatodistannoxanes²⁹⁴ are catalysts for the polymerisation of polyisocyanates. Organotin systems such as Me_SnOH-MoO_(acac), Bu_SnCl(OH)- H_2WO_4 , and $Me_5SnOH-VO(acac)$ catalyse the epoxidation of alkenes²⁹⁵.

Organophosphatostannanes have been used as catalysts for hardening organopolysiloxanes¹⁶³. Several types of thiolato-tin derivatives have been used as polymer stabilizing agents^{166,168,169,172,296-299}.

R₂Sn(OR')(OSnR₂)_n(OR') derivatives are useful as curing agents in adhesion-resistant organopolysiloxane compounds for vegetable parchment³⁰⁰.

REFERENCES

1. Abstracts of the First International Symposium on Organic Chemistry of Germanium, Tin and Lead. Marseille. 1974.

2. J. S. Thayer, J. Organometal. Chem., 76 (1974) 265.

- S. K. Mehrotra, G. Srivastava and R. C. Mehrotra, J. Organometal. Chem., 72 (1974) 277.
- 4. R. B. Larrabee, J. Organometal. Chem., 74 (1974) 313.
- 5. D. Brandes and A. Blaschette, J. Organometal. Chem., 78 (1974) 1.
- A. Singh, V. D. Gupta, G. Srivastava and R. C. Mehrotra, J. Organometal. Chem., <u>64</u> (1974) 145.
- 7. B. C. Pant, J. Organometal. Chem., 66 (1974) 321.
- 8. H. Sakurei, Free Radicals, <u>2</u> (1973) 741.
- 9. P. J. Davidson, M. F. Lappert and R. Pearce, Accounts Chem. Research, <u>7</u> (1974) 209.
- 10. C. S. Kraihanzel, J. Organometal. Chem., 73 (1974) 137.
- 11. H. Nieman, Inf. Chim., <u>111</u> (1973) 119; Chem. Abstr., <u>81</u> (1974) 105613.
- J. Kizlink and A. Hanusova, Plast. Hmoty Kauc., <u>10</u> (1973) 302; Chem.
 Abstr., <u>80</u> (1974) 83973r.
- 13. A. Karipides, C. Forman, R. H. P. Thomas and A. T. Reed, Inorg. Chem., <u>13</u> (1974) 811.
- 14. D. J. Schlyer and M. A. Ring, <u>71</u> (1974) C25.

- 15. T. N. Bell, P. Slade and A. G. Sherwood, Canad. J. Chem., <u>52</u> (1974) 1662.
- V. S. Petrosyan, A. B. Permin, S. G. Sacharov and O. A. Reutov,
 J. Organometal. Chem., <u>65</u> (1974) 07.
- D. Seyferth, W. Tronich, W. E. Smith and S. P. Hopper, J. Organometal. Chem., <u>67</u> (1974) 341.
- 18. D. Seyferth and J. L. Lefferts, J. Amer. Chem. Soc., <u>96</u> (1974) 6237.
- 19. E. J. Bulten and H. A. Budding, J. Organometal. Chem., <u>82</u> (1974) C13.
- E. J. Bulten and H. A. Budding, Abstracts First Intern. Symp. Org. Chem. Germanium, Tin and Lead. Marseille. 1974.
- 21. U. S. Patent 3787461; Chem. Abstr., 80 (1974) 83250g.
- 22. L. I. Zakharkin and N. F. Shemyakin, Zh. Obshch. Khim., 44 (1974) 1085
- 23. G. Maerkl and F. Kneidl, Angew. Chem., <u>85</u> (1973) 990.
- 24. U. S. Patent 3794670; Chem. Abstr., 80 (1974) 108670j.
- 25. Ger. Offen. 2410131; Chem. Abstr., <u>81</u> (1974) 169628u.
- E. W. Abel, R. J. Rowley, R. Mason and T. K. Mark, J. C. S. Chem. Comm., (1974) 72.
- 27. R. D. Taylor and J. L. Wardell, J. Organometal. Chem., 77 (1974) 311.
- 28. Y. Sato, Y. Ban end H. Shirar, J. Org. Chem., <u>38</u> (1973) 4373.
- Y. I. Dergunov, A. V. Pavlycheva and Y. I. Mushkin, J. Gen. Chem.
 USSR, <u>44</u> (1974) 787.
- 30. J. C. Pommier and H. G. Kuivila, J. Organometal. Chem., 74 (1974) 67.
- 31. S. Zaheer Abbas and R. C. Poller, J. C. S. Dalton, (1974) 1769.
- D. S. Matteson, R. A. Davis and L. A. Hagelee, J. Organometal. Chem., 69 (1974) 45.
- 33. T. N. Mitchell, Abstracts First Intern. Symp. Org. Chem. Germanium, Tin and Lead. Marseille. 1974.
- S. Gopinathan, C. Gopinathan and J. Gupta, Ind. J. Chem., <u>12</u> (1974)
 623.

- 35. F. Glockling, M. A. Lyle and S. R. Stobart, J. C. S. Dalton, (1974) 2537.
- 36. U. S. S. R. Patent 422738; Chem. Abstr., 81 (1974) 25808e.

- 37. A. N. Nesmeyanov and A. E. Borisov, Izv. Akad. Nauk SSSR, Ser. Khim., (1974) 1667.
- 38. G. Barbieri, Synth. React. Inorg. Met.-Org. Chem., 4 (1974) 249.
- 39. D. Seyferth and T. F. Jula, J. Organometal. Chem., <u>66</u> (1974) 195.
- 40. D. Seyferth, G. J. Murphy and R. A. Woodruff, J. Organometal. Chem., 66 (1974) C29.
- G. Daude and M. Pereyre, Abstracts First Intern. Symp. Org. Chem. Germanium, Tin, and Lead. Marseille. 1974.
- G. Guillerm, F. Meganem, M. Lequan and K. R. Brower, J. Organometal. Chem., <u>67</u> (1974) 43.
- 43. U. S. S. R. Patent 408951; Chem. Abstr., 80 (1974) 83249p.
- 44. M. G. Voronkov, R. G. Mirskov and V. I. Rakhlin, J. Gen. Chem. USSR, 44 (1974) 919.
- 45. U. S. S. R. Patent 427944; Chem. Abstr., 81 (1974) 49833k.
- 46. A. N. Nesmeyanov, N. E. Kolobova, A. B. Antonova, K. N. Anisimov and O. M. Khitrova, Izv. Akad. Nauk SSSR, Ser. Khim., (1974) 859.
- 47. K. A. Kocheskov, N. N. Zemlyanskii, N. D. Kolosova, A. A. Azizov
- and Y. A. Ustynyuk, Izv. Akad. Nauk SSSR, Ser. Khim., (1974) 1208.
- 48. K. A. Kocheskov, N. N. Zemlyanskii, N. D. Kolosova, A. A. Azizov
- and Y. A. Ustynyuk, Izv. Akad. Nauk SSSR, Ser. Khim., (1974) 960.
- 49. K. A. Kocheskov, N. N. Zemlyanskii, N. D. Kolosova, A. A. Azizov,
 - 0. A. Subbotin and Y. A. Ustynyuk, Izv. Akad. Nauk SSSR, Ser. Khim., (1974) 737.
- 50. A. N. Nesmeyanov, K. N. Anisimov, N. E. Kolobova and Y. V. Makarov, Izv. Akad. Nauk SSSR, Ser. Khim., (1973) 2815.
- 51. A. Folaranmi, R. A. N. McLean and N. Wadibia, J. Organometal. Chem., 73 (1974) 59.
- 52. C. Eaborn, I. D. Jenkins and D. R. M. Walton, J. C. S. Perkin I, (1974) 870.
- 53. J. L. Wardell and S. Ahmed, J. Organometal. Chem., <u>78</u> (1974) 395.
- 54. D. J. Peterson, M. D. Robbins and J. R. Hansen, J. Organometal. Chem., <u>73</u> (1974) 237.
- E. V. Uglova, V. D. Makhaev, N. G. Shlikhter and O. A. Reutov, Zh.
 Org. Khim., <u>10</u> (1974) 3.
- P. Chevalier, J. Ritsma and J. Rouxel, Bull. Soc. Chim. France, (1974) 1839.
- R. Alexander, W. A. Asomaning, C. Eaborn, I. D. Jenkins and D. R. M. Walton, J. C. S. Perkin II, (1974) 304.
- C. Eaborn, I. D. Jenkins and D. R. M. Walton, J. C. S. Perkin II, (1974) 596.
- 59. R. Alexander, W. A. Asomaning, C. Eaborn, I. D. Jenkins and D. R. M. Walton, J. C. S. Perkin II, (1974) 490.
- C. J. Moore, M. L. Bullpitt and W. Kitching, J. Organometal. Chem.,
 <u>64</u> (1974) 93.
- R. Alexander, M. T. Attar-Bashi, C. Eaborn and D. R. M. Walton, Tetrahedron, <u>30</u> (1974) 899.
- 62. M. H. Abraham and D. F. Dadjour, J. C. S. Perkin II, (1974) 233.
- 63. D. D. Davis and R. H. Black, J. Organometal. Chem., 82 (1974) C30.
- B. Beagley, K. McAloon and J. M. Freeman, Acta Cryst., <u>B30</u> (1974)
 444.
- 65. M. Bigwood and S. Boue, J. C. S. Chem. Comm., (1974) 529.
- M. A. Kazankov, T. I. Zverkova, M. Z. Levin and I. F. Lutsenko, Zh. Obshch. Khim., <u>44</u> (1974) 230.

67. U. S. S. R. Patent 420624; Chem. Abstr., 81 (1974) 4074x.

350 R. Knocke and W. P. Neumann, Liebigs Ann. Chem., (1974) 1486. 68. 69. P. Beak and S. W. Moje, J. Org. Chem., 39 (1974) 1320. J-P. Quintard and M. Pereyre, J. Organometal. Chem., 82 (1974) 103. 70. J. Y. Godet and M. Pereyre, Abstracts First Intern. Symp. Org. Chem. 71. Germanium, Tin and Lead. Marseille. 1974. J. Y. Godet and M. Pereyre, J. Organometal. Chem., 77 (1974) C1. 72. J. S. Filippo and G. M. Anderson, J. Org. Chem., 39 (1974) 73. 73. 74. J. W. Wilt and W. K. Chwang, J. Amer. Chem. Soc., <u>96</u> (1974) 6194. Ger. Offen. 2321402; Chem. Abstr., 80 (1974) 83248n. 75. Fr. Demande 2182231; Chem. Abstr., 80 (1974) 121114a. 76. 77. Ger. Offen. 2225322; Chem. Abstr., 80 (1974) 83247m. U. S. Patent 3792059; Chem. Abstr., 80 (1974) 96164g. 78. H. Matschiner, R. Voigtländer and A. Tzschach, J. Organometal. Chem., 79. 70 (1974) 387. 80. M. Malnar, Bull. Sci., Cons. Acad. Sci. Arts RSF Yougoslavie, Sect. A, 19 (1974) 65; Chem. Abstr., 81 (1974) 49767s. Ger. Offen. 2263305; Chem. Abstr., 81 (1974) 91734d. 81. U. S. S. R. Patent 396340; Chem. Abstr., 80 (1974) 15075d. 82. V. F. Mironov, V. I. Shiryaev, V. V. Yankov, A. F. Gladchenko and 83. A. D. Naumov, J. Gen. Chem. USSR, 44 (1974) 776. G. A. Razuvaev, G. A. Kilyakova, A. P. Batalov and V. N. Latyaeva, 84. Tr. Khim. Khim. Tekhnol., (1973) 1117; Chem. Abstr., 80 (1974) 83179r. Ger. Offen. 2304617; Chem. Abstr., 81 (1974) 152418c. 85. Ger. Offen. 2340668; Chem. Abstr., 80 (1974) 146313c. 86. V. S. Petrosan, S. G. Sakharov and O. A. Reutov, Izv. Akad. Nauk 87. SSSR, Ser. Khim., (1974) 743. Ger. Offen. 2332206; Chem. Abstr., 80 (1974) 96160c. 88

89. Fr. Demande 2179552; Chem. Abstr., <u>80</u> (1974) 108671k.
90. Japan. Kokai 74 14428; Chem. Abstr., <u>81</u> (1974) 4075y.
91. Japan. Kokai 73 97818; Chem. Abstr., <u>80</u> (1974) 70969y.
92. G. Mehrotra and A. N. Dey, J. Ind. Chem. Soc., <u>50</u> (1973) 793.
93. M. Weidenbruch and C. Pierrard, J. Organometal. Chem., <u>71</u> (1974) C29.

- 94. V. I. Shiryaev, L. V. Makhalkina, T. T. Kuz'mina, V. D. Krylov,
 V. G. Osipov and V. F. Mironov, J. Gen. Chem. USSR, <u>44</u> (1974) 2223.
- 95. E. V. Van den Berghe and G. P. Van der Kelen, J. Organometal. Chem., <u>72</u> (1974) 65.
- 96. T. Birchall, P. K. H. Chan and A. R. Peraira, J. C. S. Dalton, (1974) 2157.
- 97. F. Magno, G. Bontempelli, G. A. Mazzocchin and G. Pilloni, J. Organometal. Chem., <u>67</u> (1974) 33.
- 98. J. Buckle and P. G. Harrison, J. Organometal. Chem., 77 (1974) C22.
- 99. V. S. Petrosyan, N. S. Yashina, V. I. Bakhmutov, A. B. Fermin and
 0. A. Reutov, J. Organometal. Chem., <u>72</u> (1974) 71.
- 100. R. Barbieri and G. C. Stocco, Gazz. Chim. Ital., 104 (1974) 149.
- 101. K. A. Elegbede and R. A. N. McLean, J. Organometal. Chem., <u>69</u> (1974)
 405.
- 102. P. G. Harrison, T. J. King and J. A. Richards, J. C. S. Dalton, (1974) 1723.
- 103. L. Pellerito, R. Cefalu, A. Gianguzza and R. Barbieri, J. Organometal. Chem., <u>70</u> (1974) 303.
- 104. M. Calligaris, L. Randaccio, R. Barbieri and L. Pellerito, J. Organometal., Chem., <u>76</u> (1974) C56.
- 105. T. N. Srivastava, Ind. J. Chem., <u>12</u> (1974) 98.
- 106. T. N. Srivastava, D. C. Rupainwar and J. S. Gaur, J. Inorg. Nucl. Chem., <u>36</u> (1974) 733.

- 107. A. M. Domingos and G. M. Sheldrick, J. Organometal. Chem., <u>67</u> (1974) 257.
- Y. I. Dergunov and V. F. Gerega, J. Gen. Chem. USSR, <u>44</u> (1974) 224.
 O. S. D'yachkovskaya, Y. I. Dergunov, I. P. Malysheva and V. F. Gerega, Tr. Khim. Khim. Tekhnol., (1973) 123; Chem. Abstr., <u>80</u> (1974) 83158h.

- 110. L. Korecz, H. Köhler, L. Neef and K. Burger, J. Organometal. Chem., 69 (1974) 105.
- 111. J. A. Feiccabrino and E. J. Kupchik, J. Organometal. Chem., <u>73</u> (1974) 319.
- 112. V. Peruzzo and G. Tagliavini, J. Organometal. Chem., <u>66</u> (1974) 437.
- 113. N. Bertazzi, G. Alonzo, R. Barbieri and R. H. Herber, J. Organometal. Chem., <u>65</u> (1974) 23.
- 114. S. Sakai, Y. Kiyohara, M. Ogura and Y. Ishii, J. Organometal. Chem., <u>72</u> (1974) 93.
- 115. S. K. Mehrotra, G. Srivastava and R. C. Mehrotra, Ind. J. Chem., <u>12</u> (1974) 629.
- 116. S. K. Mehrotra, G. Srivastava and R. C. Mehrotra, Abstracts First Intern. Symp. Org. Chem. Germanium, Tin and Lead. Marseille. 1974.
- D. P. Gaur, G. Srivastava and R. C. Mehrotra, Abstracts First Intern.
 Symp. Org. Chem. Germanium, Tin, and Lead. Marseille. 1974.
- 118. Y. I. Dergunov, N. I. Mysin and Y. I. Mushkin, J. Gen. Chem. USSR, <u>44</u> (1974) 783.
- 119. S. Sakai, H. Niimi and Y. Ishii, J. Organometal. Chem., 72 (1974) 103.
- 120. U. S. Patent 3786067; Chem. Abstr., 80 (1974) 8083246k.
- 121. J. Barrau, M. Massol and J. Satge, J. Organometal. Chem., <u>71</u> (1974) C45.
- 122. D. Wagner, J. P. H. Verheyden and J. G. Moffat, J. Org. Chem., <u>39</u> (1974) 24.

- 123. A. M. Domingos and G. M. Sheldrick, Acta Cryst., <u>B30</u> (1974) 519.
 124. E. V. Van den Berghe and G. P. Van der Kelen, J. Mol. Struct., <u>20</u> (1974) 147.
- 125. J. C. Pommier and D. Chevolleau, J. Organometal. Chem., 74 (1974) 405.
- 126. M. Massol, J. Barrau, J. Satge and B. Bouyssieres, J. Organometal. Chem., <u>80</u> (1974) 47.
- 127. D. P. Gaur, G. Srivastava and R. C. Mehrotra, J. Organometal. Chem., 65 (1974) 195.
- 128. D. P. Gaur, G. Srivastava and R. C. Mehrotra, Ind. J. Chem., <u>12</u> (1974) 399.
- 129. S. K. Mehrotra, G. Srivastava and R. C. Mehrotra, J. Organometal. Chem., 65 (1974) 361.
- S. K. Mehrotra, G. Srivastava and R. C. Mehrotra, J. Organometal. Chem., <u>65</u> (1974) 367.
- 131. S. K. Mehrotra, G. Srivastava and R. C. Mehrotra, Abstracts First Intern. Symp. Org. Chem. Germanium, Tin and Lead. Marseille. 1974.
- 132. A. B. Goel and V. D. Gupta, J. Organometal. Chem., 77 (1974) 183.
- 133. A. B. Goel and V. D. Gupta, Abstracts First Intern. Symp. Org. Chem. Germanium, Tin and Lead. Marseille. 1974.
- 134. B. P. Bachlas and R. R. Jain, J. Organometal. Chem., <u>82</u> (1974) 359.
- 135. N. Serpone and R. Ishayek, Inorg. Chem., 13 (1974) 52.
- 136. D. G. Bickley and N. Serpone, Inorg. Chem., 13 (1974) 2908.
- 137. N. Serpone and K. A. Hersh, Inorg. Chem., 13 (1974) 2901.
- 138. J. N. R. Ruddick and J. R. Sams, J. C. S. Dalton, (1974) 470.
- 139. M. Aritomi and Y. Kawasaki, J. Organometal. Chem., <u>81</u> (1974) 363.
- 140. P. G. Harrison and T. J. King, J. C. S. Dalton, (1974) 2298.
- 141. H. Preut, H. J. Haupt, F. Huber, R. Cefalu and R. Barbieri, Z. anorg. allg. Chem., <u>407</u> (1974) 257.

142. H. Preut, F. Huber, H. J. Haupt, R. Cefalu and R. Barbieri, Z. anorg. allg. Chem., <u>410</u> (1974) 88.

- 143. L. Pellerito, R. Cefalu, A. Silvestri, F. Di Bianca, R. Barbieri,
 H. J. Haupt, H. Preut and F. Huber, J. Organometal. Chem., <u>78</u> (1974)
 101.
- 144. K. Kawakami, M. Miya-uchi and T. Tanaka, J. Organometal. Chem., <u>70</u> (1974) 67.
- 145. L. Pellerito, N. Bertazzi and G. C. Stocco, Inorg. Chim. Acta, <u>10</u> (1974) 221.
- 146. H. Chih and B. R. Penfold, J. Cryst. Mol. Struct., <u>3</u> (1974) 285.
- 147. G. S. Biserni and V. Peruzzo, J. Organometal. Chem., <u>67</u> (1974) 265.
- 148. L. Coghi, C. Pelizzi and G. Pelizzi, Gazz. Chim. Ital., <u>104</u> (1974) 873.
- 149. C. D. Garner and B. Hughes, J. C. S. Dalton, (1974) 1306.
- 150. Japan. Patent 73 30622; Chem. Abstr., <u>80</u> (1974) 27384s.
- 151. Neth. Appl. 73 12329; Chem. Abstr., 81 (1974) 91732b.
- 152. U. S. S. R. Patent 416361; Chem. Abstr., 80 (1974) 133626g.
- 153. D. A. Kochkin and M. N. Koton, J. Gen. Chem. USSR, <u>43</u> (1973) 2687.
- 154. U. S. S. R. Patent 407907; Chem. Abstr., <u>80</u> (1974) 96162e.
- 155. U. Kunze and H. P. VBlker, J. Organometal. Chem., <u>66</u> (1974) C43.
- 156. U. Kunze and J. D. Koola, Z. Naturforsch., <u>B29</u> (1974) 335.
- 157. J. D. Koola and U. Kunze, J. Organometal. Chem., <u>77</u> (1974) 325.
- 158. U. Kunze and J. D. Koola, J. Organometal. Chem., 80 (1974) 281.
- 159. D. Potts, H. D. Sharma, A. J. Carty and A. Walker, Inorg. Chem., <u>13</u> (1974) 1205.
- 160. A. M. Domingos and G. M. Sheldrick, J. C. S. Dalton, (1974) 475.
 161. J. P. Ashmore, T. Chivers, K. A. Kerr and J. H. G. Van Roode, J. C. S. Chem. Comm., (1974) 653.

162. K. Dehnicke, R. Schmitt, A. F. Shihada and J. Pebler, Z. anorg. allg. Chem., <u>404</u> (1974) 249.

- 163. Brit. Patent 1326075; Chem. Abstr., 80 (1974) 38098c.
- 164. S. S. Sandhu, J. Kaur and G. K. Sandhu, Syn. React. Inorg. Met.-Org. Chem., <u>4</u> (1974) 437.
- 165. A. M. Domingos and G. M. Sheldrick, J. C. S. Dalton, (1974) 477.
- 166. Japan. Patent 73 37252; Chem. Abstr., <u>80</u> (1974) 121115b.
- 167. U. S. S. R. Patent 396341; Chem. Abstr., 80 (1974) 27385t.
- 168. U. S. Patent 3793356; Chem. Abstr., <u>80</u> (1974) 96161d.
- 169. Ger. Offen. 2302749; Chem. Abstr., <u>81</u> (1974) 120791c.
- N. G. Voronkov, R. G. Mirskov, O. S. Ishchenko, V. G. Chernova and
 S. P. Sitnikova, J. Gen. Chem. USSR, <u>44</u> (1974) 223.
- 171. C. H. Stapfer and R. H. Herber, J. Organometal. Chem., <u>66</u> (1974) 425.
- 172. B. W. Rockett, M. Hadling and W. R. Poyner, J. Appl. Polym. Sci., <u>17</u> (1973) 3457.
- 173. G. A. Razuvaev, O. S. D'yachkovskaya, I. K. Grigor'eva and N. E. Tsyganash, J. Gen. Chem. USSR, <u>44</u> (1974) 550.
- 174. P. L. Clarke and J. L. Wardell, J. C. S. Dalton, (1974) 190.
- 175. D. N. Kravtsov, A. S. Peregudov, E. M. Rokhlina and L. A. Federov, J. Organometal. Chem., <u>77</u> (1974) 199.
- 176. D. N. Kravtsov, L. A. Federov, A. S. Peregudov and E. M. Rokhlina, Abstracts First Intern. Symp. Org. Chem. Germanium, Tin and Lead. Marseille. 1974.
- 177. G. Pirazzini, R. Danieli, A. Ricci and C. A. Boicelli, J. C. S. Perkin II, (1974) 853.
- 178. M. C. Langlois and M. Devaud, Bull. Soc. Chim. France, (1974) 789.
- 179. S. Kato, T. Kato, T. Yamauchi, Y. Shibahashi, E. Kakuda, M. Mizuta and Y. Ishii, J. Organometal. Chem., <u>76</u> (1974) 215.
- 180. P. F. Lindley and P. Carr, J. Cryst. Mol. Struct., <u>4</u> (1974) 173.

181. H. W. Roesky, M. Dietle and A. H. Norbury, Z. Naturforsch., <u>B28</u> (1973) 707.

- 182. D. Petridis and B. W. Fitzsimmons, Inorg. Chim. Acta, <u>11</u> (1974) 105.
 183. C. W. Allen and D. B. Brown, Inorg. Chem., <u>13</u> (1974) 2020.
 184. H. J. Götze, Angew. Chem., Intern. Ed., <u>13</u> (1974) 88.
- 185. D. Hänssgen and I. Pohl, Angew. Chem., Intern. Ed., 13 (1974) 607.
- 186. H. W. Roesky and H. Wiezer, Chem. Ber., <u>107</u> (1974) 1153.
- 187. D. Hänssgen and W. Roelle, J. Organometal. Chem., 71 (1974) 231.
- 188. J. A. Richards and P. G. Harrison, J. Organometal. Chem., <u>64</u> (1974) C3. 189. Ger. Offen. 2261455; Chem. Abstr., <u>81</u> (1974) 91733c.
- 190. A. M. Domingos and G. M. Sheldrick, J. Organometal. Chem., <u>69</u> (1974) 207.
- 191. H. W. Roesky and H. Wiezer, Chem. Ber., <u>107</u> (1974) 3186.
- 192. E. Kupchik, M. A. Pisano, D. K. Parikh and M. A. D'Amico, J. Pharm. Sci., 63 (1974) 261.
- I. Matsuda, K. Itoh and Y. Ishii, J. Organometal. Chem., <u>69</u> (1974)
 353.
- 194. H. Schumann and H. J. Breunig, J. Organometal. Chem., 76 (1974) 225.
- 195. A. T. Weibel and J. P. Oliver, J. Organometal. Chem., 82 (1974) 281.
- 196. T. A. Basalgina, O. A. Kruglaya, G. S. Kalinina and N. S. Vyazankin, Izv. Akad. Nauk SSSR, Ser. Khim., (1973) 2776.
- 197. G. S. Kalinina, O. A. Kruglaya, B. I. Petrov, E. A. Shchupak and
 N. S. Vyazankin, J. Gen. Chem. USSR, <u>44</u> (1973) 2215.
- 198. B. V. Fedor'ev, O. A. Kruglaya and N. S. Vyazankin, Izv. Akad. Nauk SSSR, Ser. Khim., (1974) 713.
- 199. T. N. Mitchell, J. Organometal. Chem., <u>71</u> (1974) 27.
- 200. T. N. Mitchell, J. Organometal. Chem., 71 (1974) 39.
- 201. A. T. Weibel and J. P. Oliver, 74 (1974) 155.

202. M. N. Bochkarev, S. P. Korneva, L. P. Maiorova, V. A. Kuznetsov and N. S. Vyazankin, J. Gen. Chem. USSR, <u>44</u> (1974) 293.

- 203. M. N. Bochkarev, L. P. Maiorova, S. P. Korneva, L. N. Bochkarev and N. S. Vyazankin, J. Organometal. Chem., 73 (1974) 229.
- 204. H. G. Kuivila and C. C. H. Pian, J. C. S. Chem. Comm., (1974) 369.
- 205. E. J. Bulten and H. A. Budding, J. Organometal. Chem., 78 (1974) 385.
- 206. A. B. Cornwell, P. G. Harrison and J. A. Richards, J. Organometal. Chem., <u>67</u> (1974) C43.
- 207. A. Peloso, J. Organometal. Chem., 67 (1974) 423.
- 208. A. Peloso, J. Organometal. Chem., 74 (1974) 59.
- 209. G. Plazzogna, V. Peruzzo and G. Tagliavini, J. Organometal. Chem., <u>66</u> (1974) 57.
- 210. H. E. Sasse, G. Hoch and M. L. Ziegler, Z. anorg. allg. Chem., <u>406</u> (1974) 263.
- 211. R. B. King and K. C. Hodges, J. Organometal. Chem., <u>65</u> (1974) 77.
- 212. R. E. J. Bichler, H. C. Clark, B. K. Hunter and A. T. Rake, J. Organometal. Chem., <u>69</u> (1974) 367.
- 213. R. D. Adams, J. Organometal. Chem., 82 (1974) C7.
- 214. R. B. King, W. M. Douglas and A. Effraty, J. Organometal. Chem., <u>69</u> (1974) 131.
- 215. C. D. Garner and R. G. Senior, Inorg. Nucl. Chem. Letters, <u>10</u> (1974) 609.
- 216. A. N. Nesmeyanov, N. E. Kolobova, V. N. Khandozhko and K. N. Anisimov, J. Gne. Chem. USSR, <u>44</u> (1974) 298.
- 217. H. C. Clark and A. T. Rake, J. Organometal. Chem., 74 (1974) 29.
- 218. E. J. Bulten and H. A. Budding, J. Organometal. Chem., <u>82</u> (1974) 121.
- 219. G. F. Bradley and S. R. Stobart, J. C. S. Dalton, (1974) 264.
- 220. J. Weaver and P. Woodward, J. C. S. Dalton, (1974) 1060.

221. J. P. Collman, D. W. Murphy, E. B. Fleischer and D. Swift, Inorg. Chem., <u>13</u> (1974) 1.

358

- 222. J. D. Cotton, P. J. Davison, D. E. Goldberg, M. F. Lappert and K. M. Thomas, J. C. S. Chem. Comm., (1974) 893.
- 223. A. B. Cornwell, P. G. Harrison and J. A. Richards, J. Organometal. Chem., <u>76</u> (1974) C26.
- P. G. Harrison, A. B. Cornwell and J. A. Richards, Abstracts First Intern. Symp. Org. Chem. Germanium, Tin and Lead. Marseille. 1974.
 C. D. Schaeffer and J. J. Zuckerman, J. Amer. Chem. Soc., <u>96</u> (1974) 7160.
- 226. K. D. Bos, E. J. Bulten and J. G. Noltes, J. Organometal. Chem., <u>67</u> (1974) C13.
- 227. P. F. R. Ewings, D. E. Fenton and P. G. Harrison, Inorg. Nucl. Chem. Letters, <u>10</u> (1974) 43.
- 228. K. D. Bos, E. J. Bulter, J. G. Noltes and A. L. Spek, J. Organometal. Chem., <u>71</u> (1974) C52.
- 229. C. V. Magatti and W. P. Giering, J. Organometal. Chem., 73 (1974) 85.
- 230. I. Wakeshima and I. Kijima, J. Organometal. Chem., <u>76</u> (1974) 37.
- 231. D. J. Peterson and J. F. Ward, J. Organometal. Chem., <u>66</u> (1974) 209.
- 232. B. Busch and K. Dehnicke, J. Organometal. Chem., <u>67</u> (1974) 237.
- 233. B. Mathiasch. Z. anorg. allg. Chem., <u>403</u> (1974) 225.
- 234. V. B. Ramos and R. S. Tobias, Spectrochim. Acta, <u>30A</u> (1974) 181.
- 235. A. Marchand, P. Gerval, M. Massol and J. Barrau, J. Organometal. Chem., 74 (1974) 209.
- 236. A. Marchand, P. Gerval, M. Massol and J. Barrau, J. Organometal. Chem., <u>74</u> (1974) 227.
- 237. S. Kato, A. Hori, H. Shiotani, M. Mizuta, N. Hayashi and T. Takakuwa, J. Organometal. Chem., <u>82</u> (1974) 223.

238. D. I. MacLean and R. E. Sacher, J. Organometal. Chem., 74 (1974) 197.

- 239. N. C. Cutress, T. B. Grindley, A. R. Katritzky, A. Eaborn, D. R. M. Walton and R. D. Topsom, J. Organometal. Chem., <u>65</u> (1974) 17.
- 240. L. W. Reeves, M. Suzuki, A. S. Tracey and J. A. Vanin, Inorg. Chem., 13 (1974) 999.
- 241. Y. N. Luzikov, N. M. Sergeyev and Y. A. Ustynyuk, J. Organometal. Chem., <u>65</u> (1974) 303.
- 242. C. D. Schaeffer and J. J. Zuckerman, J. Organometal. Chem., <u>78</u> (1974) 373.
- 243. M. Gielen and J. Topart, J. Organometal. Chem., <u>81</u> (1974) 357.
- 244. G. E. Matsubayashi and T. Tanaka, Spectrochim. Acta, 30A (1974) 869.
- 245. D. E. Axelson, S. A. Kandil and C. E. Holloway, Canad. J. Chem., 52 (1974) 2968.
- 246. V. N. Torocheshnikov, A. P. Tupciauskas and Y. A. Ustynyuk, J. Organometal. Chem., <u>81</u> (1974) 351.
- 247. M. Barnard, P. J. Smith and R. F. M. White, J. Organometal. Chem., <u>77</u> (1974) 189.
- D. Doddrell, M. L. Bullpitt, C. J. Moore, C. W. Fong, W. Kitching,
 W. Adcock and B. D. Gupta, Tet. Letters, (1973) 665.
- 249. W. Adcock, B. D. Gupta, W. Kitching, D. Doddrell and M. Geckle, J. Amer. Chem., <u>96</u> (1974) 7360.
- 250. G. Barbieri and F. Taddei, J. Organometal. Chem., 70 (1974) 383.
- 251. J. D. Kennedy and W. McFarlane, J. C. S. Perkin II, (1974) 146.
- 252. W. McFarlane and D. S. Rycroft, J. C. S. Dalton, (1974) 1977.
- 253. T. N. Mitchell, J. Organometal. Chem., 70 (1974) C1.
- 254. M. Gielen, S. Simon, Y. Tondeur, M. Vande Steen and C. Hoogzand, Bull. Soc. Chim. Belg., <u>83</u> (1974) 337.
- 255. D. Doddrell, I. Burfitt, W. Kitching, M. Bullpitt, C. H. Lee, R. J. Mynot, J. L. Considine, H. G. Kuivila and R. H. Sarma, J. Amer. Chem., <u>96</u> (1974) 1640.

256. R. Radeglia and G. Engelhardt, Z. Chem., <u>14</u> (1974) 319.
257. G. M. Bancroft, V. G. Kumar Das, T. K. Sham and M. G. Clark, J. C. S. Chem. Comm., (1974) 236.

- 258. R. H. Herber, M. F. Leahy and Y. Hazony, J. Chem. Phys., <u>60</u> (1974) 5070.
- 259. G. M. Bancroft, V. G. Kumar Das and K. D. Butler, J. C. S. Dalton, (1974) 2355.
- 260. D. V. Naik and C. Curran, J. Organometal. Chem., <u>81</u> (1974) 177.
- 261. R. W. Rudolph and V. Chowdhry, Inorg. Chem., 13 (1974) 248.
- 262. Y. Limouzin and J. C. Maire, J. Organometal. Chem., <u>82</u> (1974) 99.
- 263. G. M. Bancroft and T. K. Sham, Canad. J. Chem., <u>52</u> (1974) 1361.
- R. Barbieri, L. Pellerito, G. Stocco and N. Bertazzi, Chim. Ind. (Milan), 56 (1974) 350.
- 265. P. L. Clarke, R. A. Howie and J. L. Wardell, J. Inorg. Nucl. Chem., <u>36</u> (1974) 2449.
- 266. R. Gassend, Y. Limouzin, J. C. Maire, A. K. M. A. Muttalib and C. More, J. Organometal. Chem., <u>78</u> (1974) 215.
- 267. S. R. A. Bird, J. D. Donaldson, A. F. LeC. Holding, S. Cenini and
 B. Ratcliff, Inorg. Chim. Acta, <u>8</u> (1974) 149.
- 268. M. Gielen and J. Topart, Bull. Soc. Chim. Belg., 83 (1974) 249.
- 269. J. K. Terlouw, W. Heerma, P. C. M. Frintop, G. Dijkstra and H. A. Meinema, J. Organometal. Chem., <u>64</u> (1974) 205.
- G. Distefano, A. Ricci, R. Danieli, A. Foffani, G. Innorta and S. Torroni, J. Organometal. Chem., <u>65</u> (1974) 205.
- 271. H. C. Clark and A. T. Rake, J. Organometal. Chem., <u>82</u> (1974) 159.
 272. M. F. Lappert, J. B. Pedley and G. Sharp, J. Organometal. Chem., <u>66</u> (1974) 271.
- 273. P. K. Bischof, M. J. S. Dewar, D. W. Goodman and T. B. Jones, J. Organometal. Chem., <u>82</u> (1974) 89.

274. R. S. Brown, D. F. Eaton, A. Hosomi, T. G. Traylor and J. M. Wright, J. Organometal. Chem., <u>66</u> (1974) 249.

- 275. A. Schweig, U. Weidner and G. Manuel, J. Organometal. Chem., <u>67</u> (1974) C4.
- 276. G. Distefano, A. Ricci, F. P. Colonna, D. Pietropaolo and S. Pignataro,
 J. Organometal. Chem., <u>78</u> (1974) 93.
- 277. S. A. Fieldhouse, A. R. Lyons, H. C. Starkie and M. C. R. Symons,
 J. C. S. Dalton, (1974) 1966.
- 278. J. D. Cotton, C. S. Gundy, D. H. Harris, A. Hudson, M. F. Lappert and P. W. Lednor, J. C. S. Chem. Comm., (1974) 651.
- 279. A. H. Cohen and B. M. Hoffman, Inorg. Chem., 13 (1974) 1484.
- 280. B. R. Hollebone, J. C. S. Dalton, (1974) 1889.
- 281. S. Sorriso, A. Foffani, A. Ricci and R. Danieli, J. Organometal. Chem., <u>67</u> (1974) 369.
- 282. E. V. Van den Berghe and G. P. Van der Kelen, J. Organometal. Chem., 82 (1974) 345.
- 283. V. A. Volodin, L. A. Frangulyan and A. N. Parshina, Khim. Prom (Moscow), <u>49</u> (1973) 832; Chem. Abstr., <u>80</u> (1974) 70904y.
- 284. G. Delmas and S. Turrell, J. C. S. Faraday I, (1974) 572.
- 285. R. D. Bach and P. A. Scherr, Tet. Letters, (1973) 1099.
- 286. V. M. Glazov, Tr. Khim. Khim. Tekhnol., (1973) 151; Chem. Abstr., <u>80</u> (1974) 121474t.
- 287. R. Barbieri, L. Pellerito, N. Bertazzi and G. C. Stocco, Inorg.
 Chim. Acta, <u>11</u> (1974) 173.
- 288. U. S. Patent 3764292; Chem. Abstr., 80 (1974) 104882g.
- 289. U. S. Patent 3790611; Chem. Abstr., <u>80</u> (1974) 83245j.
- 290. Ger. Offen. 2349474; Chem. Abstr., <u>81</u> (1974) 25809f.
- 291. Ger. Offen. 2238360; Chem. Abstr., 80 (1974) 121108b.
- 292. U. S. Patent 3787417; Chem. Abstr., 80 (1974) 83243g.

362 U. S. Patent 3781316; Chem. Abstr., 80 (1974) 60042b 293. Japan. Patent 73 30154; Chem. Abstr., 80 (1974) 96613c. 294. U. S. Patent 3806467; Chem. Abstr., <u>81</u> (1974) 78090w. 295. U. S. Patent 3758341; Chem. Abstr., 80 (1974) 60571y. 296. Ger. Offen 2209336; Chem. Abstr., 80 (1974) 15890r. 297. Ger. Offen. 2307360; Chem. Abstr., 80 (1974) 27903k. 298. Ger. Offen. 2318554; Chem. Abstr., 80 (1974) 84157u. 299. Brit. Patent 1343271; Chem. Abstr., 80 (1974) 121107a. 300. F. Glockling and R. J. I. Pollock, Abstracts First Intern. Symp. 301 -Org. Chem. Germanium, Tin and Lead. Marseille. 1974. D. Seyferth and S. C. Vick, Synth. React. Inorg. Met .- Org. Chem., 302. 4 (1974) 515.

. 303. M. Lehnig, Tet. Letters, (1974) 3323.

304. R. Breslow and T. Sugimoto, Tet. Letters, (1974) 2437.